# Symbolic math¶

## Library¶

In [1]:
import sympy as sp
sp.init_printing()                     # to get pretty output
from IPython.display import display    # can use display instead of print for nice output

## Tutorial¶

Here is a link to a great sympy tutorial. These notes follow the tutorial.

## Define symbols¶

In [2]:
x, y, z = sp.symbols('x, y, z')

## Expressions¶

In [3]:
ex1 = x*sp.cos(x)           # note, expressions are immutable
ex2 = x**2 + y**2 + z
ex3 = sp.sqrt(x+y/2)

display(ex1)
display(ex2)
ex3
$$x \cos{\left (x \right )}$$
$$x^{2} + y^{2} + z$$
Out[3]:
$$\sqrt{x + \frac{y}{2}}$$

### Substite a number or symbol in an expression¶

• subs function

Exercise

• For ex1=x*sp.cos(x) make the following substitutions:
• $x \rightarrow 1.0$
• $x \rightarrow 1$
• $x \rightarrow y$
• $x \rightarrow y^2+z$
In [ ]:

• You can sub more than one thing:

Exercise

• For ex = x**2 + 2*x*z - y make the substitution $x\rightarrow 4.5$, $y\rightarrow 2.2$.
In [4]:
ex = x**2 + 2*x*z - y
• You can also use the evalf function to get numeric results.
In [6]:
ex = x**2 + y

ex.evalf(subs={x: 3, y: 4})
Out[6]:
$$13.0$$
In [ ]:
sp.pi.evalf(1000)

### Simplify¶

Exercise

• Use the simplify function to simplify the following expression:
In [15]:
ex = (x**2 + 3*x + 2)/(x+1)

### Expand¶

Exercise

• Use the expand function to expand the following expression:
In [16]:
ex = (x+2)*(x-3)

### Factor¶

Exercise

• Use the factor function to factor the following expression:
In [17]:
ex = x**3 - x**2 + x - 1

ex.factor()
sp.factor(ex)
sp.factor( x**3 - x**2 + x - 1 )
Out[17]:
$$\left(x - 1\right) \left(x^{2} + 1\right)$$

### Others:¶

• collect
• cancel
• apart
• trigsimp
• expand_trig
• powsimp
• expand_power_exp
• expand_power_base
• pow_denest
• expand_log
• logcombine
• etc.

## Calculus¶

### Derivatives¶

In [19]:
ex = sp.exp(x**2)

ex.diff(x)                    # these are the same
sp.diff(ex, x)
sp.diff(sp.exp(x**2), x)
Out[19]:
$$2 x e^{x^{2}}$$

Question: how would you take the third derivative of $x^4$?

In [ ]:

Exercise

• Take the following derivative: $$\frac{\partial^3}{\partial x\partial y\partial z}e^{xyz}.$$
In [ ]:

• The Derivative function doesn't evaluate the derivative, it is just used for making an expression.
• To evaluate it use the doit function.
In [20]:
ex = sp.exp(x*y*z)

my_der = sp.Derivative(ex, x, y, z)    # ex.Derivative(x,y,z) doesn't work
my_der
Out[20]:
$$\frac{\partial^{3}}{\partial z\partial y\partial x} e^{x y z}$$
In [21]:
my_der.doit()                 # now evaluate the derivative
Out[21]:
$$\left(x^{2} y^{2} z^{2} + 3 x y z + 1\right) e^{x y z}$$

### Integrals and limits work the same way:¶

• integrate function evaluates and integral
• Integral function creates an integral expression
• doit function evaluates an integral expression

Exercise

• Try out integrate on these: $$\int x^2dx$$ $$\int_0^\infty e^{-x}dx$$
• Try out Integrate and doit on the previous expression, with and without the bounds.
In [ ]:

Do a double integral: $$\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{-x^2-y^2}dxdy.$$

In [ ]:

#### Example¶

In [28]:
ex = sp.Integral(sp.log(x)**2, (x,0,2))
ex
Out[28]:
$$\int_{0}^{2} \log{\left (x \right )}^{2}\, dx$$
In [29]:
ex.doit()          # numbers retained
Out[29]:
$$- 4 \log{\left (2 \right )} + 2 \log{\left (2 \right )}^{2} + 4$$
In [30]:
ex.doit().evalf()  # chain up results and evaluate final expression
Out[30]:
$$2.18831730559662$$

### Limits¶

• Use the limit function to evaluate a limit,
• Also Limit to create a limit expression,
• doit to evaluate a limit expression

Evaluate $$\lim_{x\rightarrow 0}\frac{\sin(x)}{x}.$$

In [34]:
sp.limit(sp.sin(x)/x, x,0)      # unlike integrate we don't combine var and bounds with a tuple (!?)
Out[34]:
$$1$$

## Solvers¶

Exercise Solve $$x^2-y=0$$ with respect to $x$ using the solve function.

In [ ]:

The above was in the form $f(x)=0$. If we have instead $x^2=1$, then use the Eq function to create the expression.

In [37]:
ex = sp.Eq(x**2,y)                # creates expression x^2 = 1

### Systems of equations¶

Exercise

• Solve this: \begin{align} x-y+2 &=0 \\ x+y-3 &=0 \end{align}

• need a tuple of expressions, and a tuple of variables being solved for.

In [ ]:

Exercise

• Solve this: \begin{align} xy-7 &=0 \\ x+y-6 &= 0 \end{align}
In [ ]:

### Solve differential equations¶

• Use function dsolve
• Need to define a function symbol.
In [39]:
f = sp.Function('f')         # define a symbol for holding a function
f(x)                         # can also use f,g = sp.symbols('f,g', cls=Function)
Out[39]:
$$f{\left (x \right )}$$
In [40]:
f(x).diff(x)                 # these are the same
sp.diff(f(x), x)             # note: we refer to f(x) not f
Out[40]:
$$\frac{d}{d x} f{\left (x \right )}$$
In [41]:
f(x).diff(x,x)               # second derivative
Out[41]:
$$\frac{d^{2}}{d x^{2}} f{\left (x \right )}$$

Setup and solve this equation: $$f^{\prime\prime}(x) - 2f^{\prime}(x)+f(x)= \sin(x).$$

In [42]:
my_diffeq = sp.Eq(f(x).diff(x,x) - 2*f(x).diff(x) + f(x), sp.sin(x))
my_diffeq
Out[42]:
$$f{\left (x \right )} - 2 \frac{d}{d x} f{\left (x \right )} + \frac{d^{2}}{d x^{2}} f{\left (x \right )} = \sin{\left (x \right )}$$
In [43]:
sp.dsolve(my_diffeq, f(x))
Out[43]:
$$f{\left (x \right )} = \left(C_{1} + C_{2} x\right) e^{x} + \frac{\cos{\left (x \right )}}{2}$$

## Matrices¶

### Functions¶

• Matrix
• shape
• row
• col
• col_del
• row_del
• col_insert
• row_insert
• T for transpose
• zeros(m,n)
• ones(m,n)
• diag
• nullspace
• eigenvals
• diagonalize
• rref
In [35]:
A = sp.Matrix( [ [1,-1], [3,4], [0,2] ] )
A
Out[35]:
$\displaystyle \left[\begin{matrix}1 & -1\\3 & 4\\0 & 2\end{matrix}\right]$
In [36]:
b = sp.Matrix([1,2])     # assumes a column vector
b
Out[36]:
$\displaystyle \left[\begin{matrix}1\\2\end{matrix}\right]$
In [37]:
A.shape
Out[37]:
$\displaystyle \left( 3, \ 2\right)$
In [38]:
A.row(1)
Out[38]:
$\displaystyle \left[\begin{matrix}3 & 4\end{matrix}\right]$
In [39]:
A.row_del(0)
A
Out[39]:
$\displaystyle \left[\begin{matrix}3 & 4\\0 & 2\end{matrix}\right]$
In [40]:
x = A**-1 * b
x
Out[40]:
$\displaystyle \left[\begin{matrix}-1\\1\end{matrix}\right]$
In [41]:
A*x                 # should equal b
Out[41]:
$\displaystyle \left[\begin{matrix}1\\2\end{matrix}\right]$

### Symbolic matrix solution¶

In [46]:
m11, m12, m21, m22 = sp.symbols("m11, m12, m21, m22")
b1, b2             = sp.symbols("b1, b2")
In [47]:
A = sp.Matrix([ [m11, m12], [m21, m22] ])    # syntax is similar to numpy
b = sp.Matrix([b1,b2])
In [48]:
A
Out[48]:
$$\left[\begin{matrix}m_{11} & m_{12}\\m_{21} & m_{22}\end{matrix}\right]$$
In [49]:
b
Out[49]:
$$\left[\begin{matrix}b_{1}\\b_{2}\end{matrix}\right]$$
In [50]:
A.inv()*b        # these are the same
A**-1 * b
Out[50]:
$$\left[\begin{matrix}\frac{b_{1} m_{22}}{m_{11} m_{22} - m_{12} m_{21}} - \frac{b_{2} m_{12}}{m_{11} m_{22} - m_{12} m_{21}}\\- \frac{b_{1} m_{21}}{m_{11} m_{22} - m_{12} m_{21}} + \frac{b_{2} m_{11}}{m_{11} m_{22} - m_{12} m_{21}}\end{matrix}\right]$$
In [1]:

In [ ]: