Difference between revisions of "Bi/BE 250c Winter 2011"
Line 35:  Line 35:  
 align=right  [BFS]   align=right  [BFS]  
 D. Del Vecchio and R. M. Murray, ''Biomolecular Feedback Systems''. Available online at http://www.cds.caltech.edu/~murray/amwiki/BFS.   D. Del Vecchio and R. M. Murray, ''Biomolecular Feedback Systems''. Available online at http://www.cds.caltech.edu/~murray/amwiki/BFS.  
−  * Class  +  * Class version (Caltech access only): {{be250c pdfwi11caltech/bfsclassfrontmatter_01Jan11.pdfTOC}}, {{be250c pdfwi11caltech/bfsclassintro_01Jan11.pdfCh 1}}, {{be250c pdfwi11caltech/bfsclasscoreproc_01Jan11.pdfCh 2}}, {{be250c pdfwi11caltech/bfsclassbackmatter_01Jan11.pdfRefs}} 
 valign=top   valign=top  
 align=right  [Klipp]   align=right  [Klipp] 
Revision as of 03:49, 3 January 2011
Systems Biology  
Instructors

Teaching Assistants

Course Description
The class will focus on quantitative studies of cellular and developmental systems in biology. It will examine the architecture of specific genetic circuits controlling microbial behaviors and multicellular development in model organisms. The course will approach most topics from both experimental and theoretical/computational perspectives. Specific topics include chemotaxis, multistability and differentiation, biological oscillations, stochastic effects in circuit operation, as well as higherlevel circuit properties such as robustness. The course will also consider the organization of transcriptional and proteinprotein interaction networks at the genomic scale.
Announcements
 24 Oct 2010: web page creation
Textbook
The primary text for the course (available via the online bookstore) is
[Alon]  U. Alon, An Introduction to Systems Biology: Design Principles of Biological Circuits, CRC Press, 2006. 
The following additional texts and notes may be useful for some students:
[BFS]  D. Del Vecchio and R. M. Murray, Biomolecular Feedback Systems. Available online at http://www.cds.caltech.edu/~murray/amwiki/BFS. 
[Klipp]  Edda Klipp, Wolfram Liebermeister, Christoph Wierling, Axel Kowald, Hans Lehrach, Ralf Herwig, Systems biology: A textbook. Wiley, 2009. 
Lecture Schedule
Week  Date  Topic  Reading  Homework 
1  4 Jan 6 Jan MBE 
Course overview; gene circuit dynamics
Recitation sections (TAs):



2  11 Jan 13 Jan MBE 
Circuit motifs



3  18 Jan 20 Jan RMM 
Biological clocks: how to produce oscillations in cells



4  25 Jan 27 Jan RMM 
Robustness



5  1 Feb 3 Feb MBE 
Noise
Probabilistic differentiation (?) 


6  8 Feb 10 Feb TAs 
Population dynamics and Evolution 
 
7  15 Feb 17 Feb MBE 
Dynamic signal coding



8  22 Feb 24 Feb RMM 
Patterning



9  1 Mar 3 Mar TBD 
Fine grain patterns


10  8 Mar TBD 
Epistasis and modularity


Other possible topics (if time):
 Population dynamics, infection dynamics (after week 5)
 Signaling cascades (MAPK cascades)  after motifs
 Data analysis (tutorial)?
Grading
The ﬁnal grade will be based on biweekly homework sets. The homework will be due in class one week after they are assigned. Late homework will not be accepted without prior permission from the instructor.
The lowest homework score you receive will be dropped in computing your homework average. In addition, if your score on the ﬁnal is higher than the weighted average of your homework and ﬁnal, your ﬁnal will be used to determine your course grade.
Collaboration Policy
Collaboration on homework assignments is encouraged. You may consult outside reference materials, other students, the TA, or the instructor. Use of solutions from previous years in the course is not allowed. All solutions that are handed should reﬂect your understanding of the subject matter at the time of writing.