!date
Wed Mar 6 12:56:23 PST 2013
import ipynb_style
ipynb_style.clean()
Stan is not an acronym, it is a BUGS-competitor MCMC package produced by Andrew Gelman and company. It has come up enough now that I need to give it a try. There is also some enthusiasm about packaging it for python, a la rstan.
!wget https://stan.googlecode.com/files/stan-src-1.1.1.tgz
--2013-03-06 13:00:09-- https://stan.googlecode.com/files/stan-src-1.1.1.tgz Resolving stan.googlecode.com... 74.125.141.82, 2607:f8b0:400e:c02::52 Connecting to stan.googlecode.com|74.125.141.82|:443... connected. HTTP request sent, awaiting response... 200 OK Length: 24059353 (23M) [application/x-gzip] Saving to: “stan-src-1.1.1.tgz” 100%[======================================>] 24,059,353 7.61M/s in 3.0s 2013-03-06 13:00:12 (7.61 MB/s) - “stan-src-1.1.1.tgz” saved [24059353/24059353]
#!tar -xvzf stan-src-1.1.1.tgz
It seems that there is a complete copy of Boost in there, as well as a copy of Eigen.
cd stan-src-1.1.1/
/snfs2/HOME/abie/new_dm/stan-src-1.1.1
!make bin/libstan.a
g++ -I src -I lib/eigen_3.1.2 -I lib/boost_1.52.0 -Wall -DBOOST_RESULT_OF_USE_TR1 -DBOOST_NO_DECLTYPE -c -O3 -o bin/stan/agrad/agrad.o src/stan/agrad/agrad.cpp src/stan/agrad/agrad.hpp:2191: warning: ‘void stan::agrad::free_memory()’ defined but not used g++ -I src -I lib/eigen_3.1.2 -I lib/boost_1.52.0 -Wall -DBOOST_RESULT_OF_USE_TR1 -DBOOST_NO_DECLTYPE -c -O3 -o bin/stan/math/matrix.o src/stan/math/matrix.cpp g++ -I src -I lib/eigen_3.1.2 -I lib/boost_1.52.0 -Wall -DBOOST_RESULT_OF_USE_TR1 -DBOOST_NO_DECLTYPE -c -O3 -o bin/stan/agrad/matrix.o src/stan/agrad/matrix.cpp src/stan/agrad/agrad.hpp:2191: warning: ‘void stan::agrad::free_memory()’ defined but not used ar -rs bin/libstan.a bin/stan/agrad/agrad.o bin/stan/math/matrix.o bin/stan/agrad/matrix.o ar: creating bin/libstan.a
!make bin/stanc
g++ -I src -I lib/eigen_3.1.2 -I lib/boost_1.52.0 -Wall -DBOOST_RESULT_OF_USE_TR1 -DBOOST_NO_DECLTYPE -c -O3 -o bin/stan/command/stanc.o src/stan/command/stanc.cpp g++ -I src -I lib/eigen_3.1.2 -I lib/boost_1.52.0 -Wall -DBOOST_RESULT_OF_USE_TR1 -DBOOST_NO_DECLTYPE -c -O0 -o bin/stan/gm/grammars/statement_grammar_inst.o src/stan/gm/grammars/statement_grammar_inst.cpp g++ -I src -I lib/eigen_3.1.2 -I lib/boost_1.52.0 -Wall -DBOOST_RESULT_OF_USE_TR1 -DBOOST_NO_DECLTYPE -c -O0 -o bin/stan/gm/grammars/whitespace_grammar_inst.o src/stan/gm/grammars/whitespace_grammar_inst.cpp g++ -I src -I lib/eigen_3.1.2 -I lib/boost_1.52.0 -Wall -DBOOST_RESULT_OF_USE_TR1 -DBOOST_NO_DECLTYPE -c -O0 -o bin/stan/gm/grammars/expression_grammar_inst.o src/stan/gm/grammars/expression_grammar_inst.cpp g++ -I src -I lib/eigen_3.1.2 -I lib/boost_1.52.0 -Wall -DBOOST_RESULT_OF_USE_TR1 -DBOOST_NO_DECLTYPE -c -O0 -o bin/stan/gm/grammars/var_decls_grammar_inst.o src/stan/gm/grammars/var_decls_grammar_inst.cpp g++ -I src -I lib/eigen_3.1.2 -I lib/boost_1.52.0 -Wall -DBOOST_RESULT_OF_USE_TR1 -DBOOST_NO_DECLTYPE -c -O0 -o bin/stan/gm/grammars/statement_2_grammar_inst.o src/stan/gm/grammars/statement_2_grammar_inst.cpp g++ -I src -I lib/eigen_3.1.2 -I lib/boost_1.52.0 -Wall -DBOOST_RESULT_OF_USE_TR1 -DBOOST_NO_DECLTYPE -c -O0 -o bin/stan/gm/grammars/term_grammar_inst.o src/stan/gm/grammars/term_grammar_inst.cpp g++ -I src -I lib/eigen_3.1.2 -I lib/boost_1.52.0 -Wall -DBOOST_RESULT_OF_USE_TR1 -DBOOST_NO_DECLTYPE -c -O0 -o bin/stan/gm/grammars/program_grammar_inst.o src/stan/gm/grammars/program_grammar_inst.cpp g++ -I src -I lib/eigen_3.1.2 -I lib/boost_1.52.0 -Wall -DBOOST_RESULT_OF_USE_TR1 -DBOOST_NO_DECLTYPE -c -O0 -o bin/stan/gm/ast_def.o src/stan/gm/ast_def.cpp ar -rs bin/libstanc.a bin/stan/gm/grammars/statement_grammar_inst.o bin/stan/gm/grammars/whitespace_grammar_inst.o bin/stan/gm/grammars/expression_grammar_inst.o bin/stan/gm/grammars/var_decls_grammar_inst.o bin/stan/gm/grammars/statement_2_grammar_inst.o bin/stan/gm/grammars/term_grammar_inst.o bin/stan/gm/grammars/program_grammar_inst.o bin/stan/gm/ast_def.o ar: creating bin/libstanc.a g++ -I src -I lib/eigen_3.1.2 -I lib/boost_1.52.0 -Wall -DBOOST_RESULT_OF_USE_TR1 -DBOOST_NO_DECLTYPE -lpthread -O0 -o bin/stanc bin/stan/command/stanc.o -Lbin -lstanc
!cat src/models/basic_estimators/bernoulli.stan
data { int<lower=0> N; int<lower=0,upper=1> y[N]; } parameters { real<lower=0,upper=1> theta; } model { theta ~ beta(1,1); for (n in 1:N) y[n] ~ bernoulli(theta); }
!cat src/models/basic_estimators/bernoulli.data.R
N <- 10 y <- c(0,1,0,0,0,0,0,0,0,1)
!make src/models/basic_estimators/bernoulli
--- Precompiling src/stan/model/model_header.hpp for g++ --- g++ -I src -I lib/eigen_3.1.2 -I lib/boost_1.52.0 -Wall -DBOOST_RESULT_OF_USE_TR1 -DBOOST_NO_DECLTYPE -O3 -o src/stan/model/model_header.hpp.gch src/stan/model/model_header.hpp In file included from src/stan/prob/distributions/multivariate/discrete.hpp:5, from src/stan/prob/distributions/multivariate.hpp:5, from src/stan/prob/distributions.hpp:5, from src/stan/model/model_header.hpp:31: src/stan/agrad/agrad.hpp:2191: warning: ‘void stan::agrad::free_memory()’ defined but not used --- Translating Stan graphical model to C++ code --- bin/stanc src/models/basic_estimators/bernoulli.stan --o=src/models/basic_estimators/bernoulli.cpp Model name=bernoulli_model Input file=src/models/basic_estimators/bernoulli.stan Output file=src/models/basic_estimators/bernoulli.cpp g++ -I src -I lib/eigen_3.1.2 -I lib/boost_1.52.0 -Wall -DBOOST_RESULT_OF_USE_TR1 -DBOOST_NO_DECLTYPE -c -O3 -o src/models/basic_estimators/bernoulli.o src/models/basic_estimators/bernoulli.cpp src/stan/agrad/agrad.hpp:2191: warning: ‘void stan::agrad::free_memory()’ defined but not used g++ -I src -I lib/eigen_3.1.2 -I lib/boost_1.52.0 -Wall -DBOOST_RESULT_OF_USE_TR1 -DBOOST_NO_DECLTYPE -lpthread -O3 -o src/models/basic_estimators/bernoulli src/models/basic_estimators/bernoulli.o -Lbin -lstan
cd src/models/basic_estimators
/snfs2/HOME/abie/new_dm/stan-src-1.1.1/src/models/basic_estimators
!./bernoulli --data=bernoulli.data.R
STAN SAMPLING COMMAND data = bernoulli.data.R init = random initialization init tries = 1 samples = samples.csv append_samples = 0 save_warmup = 0 seed = 1225776884 (randomly generated) chain_id = 1 (default) iter = 2000 warmup = 1000 thin = 1 (default) equal_step_sizes = 0 leapfrog_steps = -1 max_treedepth = 10 epsilon = -1 epsilon_pm = 0 delta = 0.5 gamma = 0.05 Iteration: 1 / 2000 [ 0%] (Adapting) Iteration: 10 / 2000 [ 0%] (Adapting) Iteration: 20 / 2000 [ 1%] (Adapting) Iteration: 30 / 2000 [ 1%] (Adapting) Iteration: 40 / 2000 [ 2%] (Adapting) Iteration: 50 / 2000 [ 2%] (Adapting) Iteration: 60 / 2000 [ 3%] (Adapting) Iteration: 70 / 2000 [ 3%] (Adapting) Iteration: 80 / 2000 [ 4%] (Adapting) Iteration: 90 / 2000 [ 4%] (Adapting) Iteration: 100 / 2000 [ 5%] (Adapting) Iteration: 110 / 2000 [ 5%] (Adapting) Iteration: 120 / 2000 [ 6%] (Adapting) Iteration: 130 / 2000 [ 6%] (Adapting) Iteration: 140 / 2000 [ 7%] (Adapting) Iteration: 150 / 2000 [ 7%] (Adapting) Iteration: 160 / 2000 [ 8%] (Adapting) Iteration: 170 / 2000 [ 8%] (Adapting) Iteration: 180 / 2000 [ 9%] (Adapting) Iteration: 190 / 2000 [ 9%] (Adapting) Iteration: 200 / 2000 [ 10%] (Adapting) Iteration: 210 / 2000 [ 10%] (Adapting) Iteration: 220 / 2000 [ 11%] (Adapting) Iteration: 230 / 2000 [ 11%] (Adapting) Iteration: 240 / 2000 [ 12%] (Adapting) Iteration: 250 / 2000 [ 12%] (Adapting) Iteration: 260 / 2000 [ 13%] (Adapting) Iteration: 270 / 2000 [ 13%] (Adapting) Iteration: 280 / 2000 [ 14%] (Adapting) Iteration: 290 / 2000 [ 14%] (Adapting) Iteration: 300 / 2000 [ 15%] (Adapting) Iteration: 310 / 2000 [ 15%] (Adapting) Iteration: 320 / 2000 [ 16%] (Adapting) Iteration: 330 / 2000 [ 16%] (Adapting) Iteration: 340 / 2000 [ 17%] (Adapting) Iteration: 350 / 2000 [ 17%] (Adapting) Iteration: 360 / 2000 [ 18%] (Adapting) Iteration: 370 / 2000 [ 18%] (Adapting) Iteration: 380 / 2000 [ 19%] (Adapting) Iteration: 390 / 2000 [ 19%] (Adapting) Iteration: 400 / 2000 [ 20%] (Adapting) Iteration: 410 / 2000 [ 20%] (Adapting) Iteration: 420 / 2000 [ 21%] (Adapting) Iteration: 430 / 2000 [ 21%] (Adapting) Iteration: 440 / 2000 [ 22%] (Adapting) Iteration: 450 / 2000 [ 22%] (Adapting) Iteration: 460 / 2000 [ 23%] (Adapting) Iteration: 470 / 2000 [ 23%] (Adapting) Iteration: 480 / 2000 [ 24%] (Adapting) Iteration: 490 / 2000 [ 24%] (Adapting) Iteration: 500 / 2000 [ 25%] (Adapting) Iteration: 510 / 2000 [ 25%] (Adapting) Iteration: 520 / 2000 [ 26%] (Adapting) Iteration: 530 / 2000 [ 26%] (Adapting) Iteration: 540 / 2000 [ 27%] (Adapting) Iteration: 550 / 2000 [ 27%] (Adapting) Iteration: 560 / 2000 [ 28%] (Adapting) Iteration: 570 / 2000 [ 28%] (Adapting) Iteration: 580 / 2000 [ 29%] (Adapting) Iteration: 590 / 2000 [ 29%] (Adapting) Iteration: 600 / 2000 [ 30%] (Adapting) Iteration: 610 / 2000 [ 30%] (Adapting) Iteration: 620 / 2000 [ 31%] (Adapting) Iteration: 630 / 2000 [ 31%] (Adapting) Iteration: 640 / 2000 [ 32%] (Adapting) Iteration: 650 / 2000 [ 32%] (Adapting) Iteration: 660 / 2000 [ 33%] (Adapting) Iteration: 670 / 2000 [ 33%] (Adapting) Iteration: 680 / 2000 [ 34%] (Adapting) Iteration: 690 / 2000 [ 34%] (Adapting) Iteration: 700 / 2000 [ 35%] (Adapting) Iteration: 710 / 2000 [ 35%] (Adapting) Iteration: 720 / 2000 [ 36%] (Adapting) Iteration: 730 / 2000 [ 36%] (Adapting) Iteration: 740 / 2000 [ 37%] (Adapting) Iteration: 750 / 2000 [ 37%] (Adapting) Iteration: 760 / 2000 [ 38%] (Adapting) Iteration: 770 / 2000 [ 38%] (Adapting) Iteration: 780 / 2000 [ 39%] (Adapting) Iteration: 790 / 2000 [ 39%] (Adapting) Iteration: 800 / 2000 [ 40%] (Adapting) Iteration: 810 / 2000 [ 40%] (Adapting) Iteration: 820 / 2000 [ 41%] (Adapting) Iteration: 830 / 2000 [ 41%] (Adapting) Iteration: 840 / 2000 [ 42%] (Adapting) Iteration: 850 / 2000 [ 42%] (Adapting) Iteration: 860 / 2000 [ 43%] (Adapting) Iteration: 870 / 2000 [ 43%] (Adapting) Iteration: 880 / 2000 [ 44%] (Adapting) Iteration: 890 / 2000 [ 44%] (Adapting) Iteration: 900 / 2000 [ 45%] (Adapting) Iteration: 910 / 2000 [ 45%] (Adapting) Iteration: 920 / 2000 [ 46%] (Adapting) Iteration: 930 / 2000 [ 46%] (Adapting) Iteration: 940 / 2000 [ 47%] (Adapting) Iteration: 950 / 2000 [ 47%] (Adapting) Iteration: 960 / 2000 [ 48%] (Adapting) Iteration: 970 / 2000 [ 48%] (Adapting) Iteration: 980 / 2000 [ 49%] (Adapting) Iteration: 990 / 2000 [ 49%] (Adapting) Iteration: 1000 / 2000 [ 50%] (Adapting) Iteration: 1010 / 2000 [ 50%] (Sampling) Iteration: 1020 / 2000 [ 51%] (Sampling) Iteration: 1030 / 2000 [ 51%] (Sampling) Iteration: 1040 / 2000 [ 52%] (Sampling) Iteration: 1050 / 2000 [ 52%] (Sampling) Iteration: 1060 / 2000 [ 53%] (Sampling) Iteration: 1070 / 2000 [ 53%] (Sampling) Iteration: 1080 / 2000 [ 54%] (Sampling) Iteration: 1090 / 2000 [ 54%] (Sampling) Iteration: 1100 / 2000 [ 55%] (Sampling) Iteration: 1110 / 2000 [ 55%] (Sampling) Iteration: 1120 / 2000 [ 56%] (Sampling) Iteration: 1130 / 2000 [ 56%] (Sampling) Iteration: 1140 / 2000 [ 57%] (Sampling) Iteration: 1150 / 2000 [ 57%] (Sampling) Iteration: 1160 / 2000 [ 58%] (Sampling) Iteration: 1170 / 2000 [ 58%] (Sampling) Iteration: 1180 / 2000 [ 59%] (Sampling) Iteration: 1190 / 2000 [ 59%] (Sampling) Iteration: 1200 / 2000 [ 60%] (Sampling) Iteration: 1210 / 2000 [ 60%] (Sampling) Iteration: 1220 / 2000 [ 61%] (Sampling) Iteration: 1230 / 2000 [ 61%] (Sampling) Iteration: 1240 / 2000 [ 62%] (Sampling) Iteration: 1250 / 2000 [ 62%] (Sampling) Iteration: 1260 / 2000 [ 63%] (Sampling) Iteration: 1270 / 2000 [ 63%] (Sampling) Iteration: 1280 / 2000 [ 64%] (Sampling) Iteration: 1290 / 2000 [ 64%] (Sampling) Iteration: 1300 / 2000 [ 65%] (Sampling) Iteration: 1310 / 2000 [ 65%] (Sampling) Iteration: 1320 / 2000 [ 66%] (Sampling) Iteration: 1330 / 2000 [ 66%] (Sampling) Iteration: 1340 / 2000 [ 67%] (Sampling) Iteration: 1350 / 2000 [ 67%] (Sampling) Iteration: 1360 / 2000 [ 68%] (Sampling) Iteration: 1370 / 2000 [ 68%] (Sampling) Iteration: 1380 / 2000 [ 69%] (Sampling) Iteration: 1390 / 2000 [ 69%] (Sampling) Iteration: 1400 / 2000 [ 70%] (Sampling) Iteration: 1410 / 2000 [ 70%] (Sampling) Iteration: 1420 / 2000 [ 71%] (Sampling) Iteration: 1430 / 2000 [ 71%] (Sampling) Iteration: 1440 / 2000 [ 72%] (Sampling) Iteration: 1450 / 2000 [ 72%] (Sampling) Iteration: 1460 / 2000 [ 73%] (Sampling) Iteration: 1470 / 2000 [ 73%] (Sampling) Iteration: 1480 / 2000 [ 74%] (Sampling) Iteration: 1490 / 2000 [ 74%] (Sampling) Iteration: 1500 / 2000 [ 75%] (Sampling) Iteration: 1510 / 2000 [ 75%] (Sampling) Iteration: 1520 / 2000 [ 76%] (Sampling) Iteration: 1530 / 2000 [ 76%] (Sampling) Iteration: 1540 / 2000 [ 77%] (Sampling) Iteration: 1550 / 2000 [ 77%] (Sampling) Iteration: 1560 / 2000 [ 78%] (Sampling) Iteration: 1570 / 2000 [ 78%] (Sampling) Iteration: 1580 / 2000 [ 79%] (Sampling) Iteration: 1590 / 2000 [ 79%] (Sampling) Iteration: 1600 / 2000 [ 80%] (Sampling) Iteration: 1610 / 2000 [ 80%] (Sampling) Iteration: 1620 / 2000 [ 81%] (Sampling) Iteration: 1630 / 2000 [ 81%] (Sampling) Iteration: 1640 / 2000 [ 82%] (Sampling) Iteration: 1650 / 2000 [ 82%] (Sampling) Iteration: 1660 / 2000 [ 83%] (Sampling) Iteration: 1670 / 2000 [ 83%] (Sampling) Iteration: 1680 / 2000 [ 84%] (Sampling) Iteration: 1690 / 2000 [ 84%] (Sampling) Iteration: 1700 / 2000 [ 85%] (Sampling) Iteration: 1710 / 2000 [ 85%] (Sampling) Iteration: 1720 / 2000 [ 86%] (Sampling) Iteration: 1730 / 2000 [ 86%] (Sampling) Iteration: 1740 / 2000 [ 87%] (Sampling) Iteration: 1750 / 2000 [ 87%] (Sampling) Iteration: 1760 / 2000 [ 88%] (Sampling) Iteration: 1770 / 2000 [ 88%] (Sampling) Iteration: 1780 / 2000 [ 89%] (Sampling) Iteration: 1790 / 2000 [ 89%] (Sampling) Iteration: 1800 / 2000 [ 90%] (Sampling) Iteration: 1810 / 2000 [ 90%] (Sampling) Iteration: 1820 / 2000 [ 91%] (Sampling) Iteration: 1830 / 2000 [ 91%] (Sampling) Iteration: 1840 / 2000 [ 92%] (Sampling) Iteration: 1850 / 2000 [ 92%] (Sampling) Iteration: 1860 / 2000 [ 93%] (Sampling) Iteration: 1870 / 2000 [ 93%] (Sampling) Iteration: 1880 / 2000 [ 94%] (Sampling) Iteration: 1890 / 2000 [ 94%] (Sampling) Iteration: 1900 / 2000 [ 95%] (Sampling) Iteration: 1910 / 2000 [ 95%] (Sampling) Iteration: 1920 / 2000 [ 96%] (Sampling) Iteration: 1930 / 2000 [ 96%] (Sampling) Iteration: 1940 / 2000 [ 97%] (Sampling) Iteration: 1950 / 2000 [ 97%] (Sampling) Iteration: 1960 / 2000 [ 98%] (Sampling) Iteration: 1970 / 2000 [ 98%] (Sampling) Iteration: 1980 / 2000 [ 99%] (Sampling) Iteration: 1990 / 2000 [ 99%] (Sampling) Iteration: 2000 / 2000 [100%] (Sampling)
!cat samples.csv
# Samples Generated by Stan # # stan_version_major=1 # stan_version_minor=1 # stan_version_patch=1 # data=bernoulli.data.R # init=random initialization # append_samples=0 # save_warmup=0 # seed=1225776884 # chain_id=1 # iter=2000 # warmup=1000 # thin=1 # equal_step_sizes=0 # leapfrog_steps=-1 # max_treedepth=10 # epsilon=-1 # epsilon_pm=0 # delta=0.5 # gamma=0.05 # lp__,treedepth__,stepsize__,theta # (mcmc::nuts_diag) adaptation finished # step size=1.43736 # parameter step size multipliers: # 1 -6.85846,1,1.43736,0.194532 -7.96891,1,1.43736,0.469048 -8.72278,1,1.43736,0.0673013 -6.7601,1,1.43736,0.269756 -7.37097,1,1.43736,0.13024 -7.37097,1,1.43736,0.13024 -6.7549,1,1.43736,0.264852 -7.39808,1,1.43736,0.40677 -6.88107,1,1.43736,0.189492 -6.88107,1,1.43736,0.189492 -6.81933,1,1.43736,0.204886 -6.75235,1,1.43736,0.238493 -6.75235,1,1.43736,0.238493 -7.45007,1,1.43736,0.413319 -7.45007,2,1.43736,0.413319 -7.45007,1,1.43736,0.413319 -7.48737,1,1.43736,0.121639 -7.48737,1,1.43736,0.121639 -7.48737,1,1.43736,0.121639 -6.93027,1,1.43736,0.329996 -6.93027,1,1.43736,0.329996 -6.99768,1,1.43736,0.169292 -6.99768,1,1.43736,0.169292 -6.99768,1,1.43736,0.169292 -6.99768,1,1.43736,0.169292 -6.99768,1,1.43736,0.169292 -6.74802,1,1.43736,0.250156 -6.74802,1,1.43736,0.250156 -6.8032,1,1.43736,0.292974 -6.8032,1,1.43736,0.292974 -6.94372,1,1.43736,0.333044 -6.77186,1,1.43736,0.277932 -7.08457,1,1.43736,0.360528 -7.08457,1,1.43736,0.360528 -7.08457,1,1.43736,0.360528 -7.86399,1,1.43736,0.0996016 -7.86399,1,1.43736,0.0996016 -7.86399,1,1.43736,0.0996016 -7.02929,1,1.43736,0.350525 -7.02929,1,1.43736,0.350525 -6.83544,1,1.43736,0.200311 -6.83544,1,1.43736,0.200311 -6.95814,1,1.43736,0.17534 -6.74827,1,1.43736,0.25282 -6.74827,1,1.43736,0.25282 -6.74827,1,1.43736,0.25282 -6.74827,1,1.43736,0.25282 -6.74827,1,1.43736,0.25282 -6.7981,1,1.43736,0.290876 -6.75251,1,1.43736,0.261967 -6.75251,1,1.43736,0.261967 -6.75597,1,1.43736,0.265974 -6.75597,1,1.43736,0.265974 -6.75597,1,1.43736,0.265974 -6.74835,1,1.43736,0.253218 -6.81502,1,1.43736,0.297502 -6.81502,1,1.43736,0.297502 -6.81502,1,1.43736,0.297502 -6.81502,1,1.43736,0.297502 -6.81502,1,1.43736,0.297502 -6.81502,1,1.43736,0.297502 -6.81502,1,1.43736,0.297502 -7.23866,1,1.43736,0.141577 -7.23866,1,1.43736,0.141577 -7.23866,1,1.43736,0.141577 -6.88085,1,1.43736,0.317788 -6.87183,1,1.43736,0.191487 -6.75117,1,1.43736,0.24017 -6.87961,1,1.43736,0.317458 -6.87961,1,1.43736,0.317458 -6.87961,1,1.43736,0.317458 -6.94214,1,1.43736,0.177985 -6.94214,1,1.43736,0.177985 -6.97485,1,1.43736,0.339746 -9.29138,1,1.43736,0.0532366 -9.29138,1,1.43736,0.0532366 -7.08014,1,1.43736,0.359755 -6.89184,1,1.43736,0.320665 -6.89184,1,1.43736,0.320665 -6.77914,1,1.43736,0.219714 -6.77914,1,1.43736,0.219714 -6.75167,1,1.43736,0.239422 -6.94993,1,1.43736,0.176682 -6.94993,1,1.43736,0.176682 -6.80171,1,1.43736,0.29237 -6.75123,1,1.43736,0.240076 -6.75123,1,1.43736,0.240076 -6.75123,1,1.43736,0.240076 -6.75123,1,1.43736,0.240076 -6.75123,1,1.43736,0.240076 -6.89676,1,1.43736,0.321918 -6.89676,1,1.43736,0.321918 -6.89676,1,1.43736,0.321918 -7.48882,1,1.43736,0.121538 -7.48882,1,1.43736,0.121538 -6.82751,1,1.43736,0.301897 -7.74117,1,1.43736,0.446372 -7.74117,1,1.43736,0.446372 -7.74117,1,1.43736,0.446372 -7.74117,1,1.43736,0.446372 -7.54298,1,1.43736,0.117889 -6.95536,1,1.43736,0.335604 -6.74849,1,1.43736,0.253819 -6.74849,1,1.43736,0.253819 -6.74849,1,1.43736,0.253819 -6.79916,1,1.43736,0.211513 -6.7677,1,1.43736,0.225763 -6.7531,1,1.43736,0.262739 -7.5625,1,1.43736,0.426742 -9.2802,1,1.43736,0.053476 -9.2802,1,1.43736,0.053476 -7.14463,1,1.43736,0.370574 -6.84895,1,1.43736,0.19683 -6.84895,1,1.43736,0.19683 -6.84895,1,1.43736,0.19683 -6.79257,1,1.43736,0.213983 -7.20734,1,1.43736,0.380342 -8.85097,1,1.43736,0.0637564 -7.88095,1,1.43736,0.46056 -6.92683,1,1.43736,0.180641 -14.9393,1,1.43736,0.00702256 -6.9366,2,1.43736,0.331442 -7.14224,1,1.43736,0.370189 -6.81225,1,1.43736,0.207078 -7.95167,1,1.43736,0.46741 -7.95167,1,1.43736,0.46741 -7.95167,1,1.43736,0.46741 -11.3568,1,1.43736,0.0244448 -9.18647,1,1.43736,0.563827 -9.18647,1,1.43736,0.563827 -9.18647,1,1.43736,0.563827 -9.58506,1,1.43736,0.0473885 -7.99352,1,1.43736,0.471369 -7.98127,1,1.43736,0.0940253 -7.98127,1,1.43736,0.0940253 -6.83694,1,1.43736,0.199912 -6.78464,1,1.43736,0.284797 -7.14638,1,1.43736,0.150818 -7.14638,1,1.43736,0.150818 -6.76283,1,1.43736,0.228913 -6.76283,1,1.43736,0.228913 -6.92614,1,1.43736,0.180763 -6.92614,1,1.43736,0.180763 -7.39296,1,1.43736,0.406112 -10.1862,1,1.43736,0.0376144 -7.61775,1,1.43736,0.433015 -7.61775,1,1.43736,0.433015 -7.61775,1,1.43736,0.433015 -7.61775,1,1.43736,0.433015 -7.17014,1,1.43736,0.374627 -7.17014,1,1.43736,0.374627 -7.43309,1,1.43736,0.125514 -7.21536,1,1.43736,0.14379 -7.0629,1,1.43736,0.160503 -7.0629,1,1.43736,0.160503 -6.76377,1,1.43736,0.228267 -6.76377,1,1.43736,0.228267 -6.76377,1,1.43736,0.228267 -6.76377,1,1.43736,0.228267 -6.76377,1,1.43736,0.228267 -6.76377,1,1.43736,0.228267 -6.8269,1,1.43736,0.202671 -7.73284,1,1.43736,0.445497 -7.73284,2,1.43736,0.445497 -7.73284,1,1.43736,0.445497 -7.73284,1,1.43736,0.445497 -7.73284,1,1.43736,0.445497 -6.7926,1,1.43736,0.2885 -6.7926,1,1.43736,0.2885 -6.7926,1,1.43736,0.2885 -6.7926,1,1.43736,0.2885 -6.7926,1,1.43736,0.2885 -6.7926,1,1.43736,0.2885 -7.09027,1,1.43736,0.157161 -7.09027,1,1.43736,0.157161 -7.22736,1,1.43736,0.142641 -7.22736,1,1.43736,0.142641 -7.22736,1,1.43736,0.142641 -7.22736,1,1.43736,0.142641 -7.22736,1,1.43736,0.142641 -7.22736,1,1.43736,0.142641 -7.22736,1,1.43736,0.142641 -7.22736,1,1.43736,0.142641 -7.75585,1,1.43736,0.105212 -6.75611,1,1.43736,0.234326 -7.31288,1,1.43736,0.395484 -7.95142,1,1.43736,0.0953985 -7.95142,1,1.43736,0.0953985 -7.95142,1,1.43736,0.0953985 -7.75093,1,1.43736,0.105479 -7.75093,1,1.43736,0.105479 -7.75093,1,1.43736,0.105479 -8.19389,1,1.43736,0.489456 -9.85655,2,1.43736,0.60439 -6.86933,1,1.43736,0.192043 -6.86933,1,1.43736,0.192043 -6.86933,1,1.43736,0.192043 -7.45491,1,1.43736,0.123929 -7.45491,1,1.43736,0.123929 -6.95962,1,1.43736,0.175102 -6.95962,1,1.43736,0.175102 -6.80626,1,1.43736,0.294186 -6.80626,1,1.43736,0.294186 -6.80626,1,1.43736,0.294186 -6.80626,2,1.43736,0.294186 -6.80626,1,1.43736,0.294186 -7.08397,1,1.43736,0.157914 -7.08397,1,1.43736,0.157914 -7.08397,1,1.43736,0.157914 -10.0611,1,1.43736,0.615653 -10.0611,1,1.43736,0.615653 -10.0611,1,1.43736,0.615653 -12.7996,1,1.43736,0.0146662 -6.74803,2,1.43736,0.250605 -6.74803,1,1.43736,0.250605 -6.74803,1,1.43736,0.250605 -6.74803,1,1.43736,0.250605 -6.74803,1,1.43736,0.250605 -6.74803,1,1.43736,0.250605 -6.74803,1,1.43736,0.250605 -6.74803,1,1.43736,0.250605 -6.74803,1,1.43736,0.250605 -8.08684,1,1.43736,0.089397 -9.02564,1,1.43736,0.553114 -9.02564,1,1.43736,0.553114 -9.02564,1,1.43736,0.553114 -8.60716,1,1.43736,0.0707209 -8.60716,1,1.43736,0.0707209 -8.60716,1,1.43736,0.0707209 -8.60716,1,1.43736,0.0707209 -6.76266,1,1.43736,0.271781 -6.76266,1,1.43736,0.271781 -6.76266,1,1.43736,0.271781 -6.81484,1,1.43736,0.297435 -6.81484,1,1.43736,0.297435 -6.81484,1,1.43736,0.297435 -6.7659,1,1.43736,0.274119 -6.7659,1,1.43736,0.274119 -7.08169,1,1.43736,0.158189 -7.08169,1,1.43736,0.158189 -7.30481,1,1.43736,0.394376 -7.30481,1,1.43736,0.394376 -7.88429,1,1.43736,0.098601 -6.75485,1,1.43736,0.235589 -6.75485,1,1.43736,0.235589 -7.3455,1,1.43736,0.132279 -7.3455,1,1.43736,0.132279 -6.78148,1,1.43736,0.283224 -8.00992,1,1.43736,0.0927346 -7.31606,1,1.43736,0.134714 -6.93692,1,1.43736,0.331515 -6.93692,1,1.43736,0.331515 -6.93692,1,1.43736,0.331515 -6.93692,1,1.43736,0.331515 -7.19299,1,1.43736,0.145988 -6.7778,1,1.43736,0.220353 -6.7778,1,1.43736,0.220353 -6.7778,1,1.43736,0.220353 -6.7778,1,1.43736,0.220353 -6.7778,1,1.43736,0.220353 -6.7778,1,1.43736,0.220353 -6.7778,1,1.43736,0.220353 -6.7778,1,1.43736,0.220353 -6.74818,1,1.43736,0.247768 -6.74818,1,1.43736,0.247768 -6.86835,1,1.43736,0.19226 -6.95764,1,1.43736,0.336096 -6.95764,1,1.43736,0.336096 -6.97019,1,1.43736,0.338771 -6.97019,1,1.43736,0.338771 -6.97019,1,1.43736,0.338771 -7.26235,1,1.43736,0.139401 -7.17876,1,1.43736,0.147424 -7.17876,1,1.43736,0.147424 -6.86044,1,1.43736,0.19407 -6.86044,1,1.43736,0.19407 -6.74828,1,1.43736,0.247154 -6.74866,1,1.43736,0.24556 -7.72424,1,1.43736,0.444589 -7.19941,1,1.43736,0.145349 -6.78111,1,1.43736,0.218798 -6.94204,1,1.43736,0.332668 -6.94204,1,1.43736,0.332668 -9.6174,1,1.43736,0.0467926 -7.86305,1,1.43736,0.458793 -8.92955,1,1.43736,0.0617009 -6.83451,1,1.43736,0.200563 -6.83451,1,1.43736,0.200563 -6.77977,1,1.43736,0.219416 -6.77344,1,1.43736,0.222547 -6.76693,1,1.43736,0.274815 -6.76693,1,1.43736,0.274815 -6.76693,1,1.43736,0.274815 -6.76693,1,1.43736,0.274815 -6.76693,1,1.43736,0.274815 -6.76802,1,1.43736,0.275536 -6.81386,1,1.43736,0.297077 -6.81386,1,1.43736,0.297077 -7.39495,1,1.43736,0.406368 -7.39495,1,1.43736,0.406368 -7.39495,1,1.43736,0.406368 -7.71212,1,1.43736,0.107625 -6.78942,1,1.43736,0.287064 -6.78942,1,1.43736,0.287064 -6.83685,1,1.43736,0.304977 -6.83685,1,1.43736,0.304977 -7.25561,1,1.43736,0.387447 -6.74806,1,1.43736,0.248971 -9.02237,1,1.43736,0.0593793 -7.65671,1,1.43736,0.437325 -7.65671,1,1.43736,0.437325 -6.83,1,1.43736,0.201799 -6.83,1,1.43736,0.201799 -7.24148,1,1.43736,0.385401 -7.24148,1,1.43736,0.385401 -7.07467,1,1.43736,0.358795 -7.37336,1,1.43736,0.130052 -6.75448,1,1.43736,0.264379 -6.75448,1,1.43736,0.264379 -6.81549,1,1.43736,0.20606 -6.81549,1,1.43736,0.20606 -6.81549,1,1.43736,0.20606 -7.71138,1,1.43736,0.443225 -6.7598,1,1.43736,0.231152 -6.7598,1,1.43736,0.231152 -6.7598,1,1.43736,0.231152 -6.76792,1,1.43736,0.225636 -6.76792,1,1.43736,0.225636 -6.76792,1,1.43736,0.225636 -7.31447,1,1.43736,0.395702 -6.93909,1,1.43736,0.332007 -6.93909,1,1.43736,0.332007 -6.93909,1,1.43736,0.332007 -7.47747,1,1.43736,0.122329 -9.11749,1,1.43736,0.0571122 -8.2559,1,1.43736,0.494791 -8.2559,1,1.43736,0.494791 -8.2559,1,1.43736,0.494791 -8.81316,1,1.43736,0.0647767 -8.81316,1,1.43736,0.0647767 -8.81316,1,1.43736,0.0647767 -7.78109,1,1.43736,0.450519 -7.55945,1,1.43736,0.426389 -7.55945,1,1.43736,0.426389 -7.42366,1,1.43736,0.410021 -7.12981,1,1.43736,0.152626 -7.12981,1,1.43736,0.152626 -7.12981,1,1.43736,0.152626 -7.01148,1,1.43736,0.167322 -7.21728,1,1.43736,0.381831 -7.21728,1,1.43736,0.381831 -8.36336,1,1.43736,0.0787248 -6.7483,1,1.43736,0.252964 -7.10683,1,1.43736,0.36434 -7.66215,1,1.43736,0.110496 -7.66215,1,1.43736,0.110496 -7.66215,1,1.43736,0.110496 -6.87814,1,1.43736,0.317064 -6.87814,1,1.43736,0.317064 -7.4947,1,1.43736,0.121132 -6.74829,1,1.43736,0.252889 -6.7484,1,1.43736,0.253451 -7.54777,1,1.43736,0.117575 -7.54777,1,1.43736,0.117575 -7.54777,1,1.43736,0.117575 -9.14976,1,1.43736,0.561419 -9.14976,1,1.43736,0.561419 -8.13531,2,1.43736,0.484308 -7.51044,2,1.43736,0.420644 -7.21339,1,1.43736,0.381251 -6.90074,1,1.43736,0.322918 -7.7712,1,1.43736,0.104386 -7.7712,1,1.43736,0.104386 -7.7712,1,1.43736,0.104386 -7.7712,1,1.43736,0.104386 -7.7712,1,1.43736,0.104386 -7.7712,1,1.43736,0.104386 -7.7712,1,1.43736,0.104386 -6.99803,1,1.43736,0.344466 -6.99803,1,1.43736,0.344466 -7.23832,1,1.43736,0.38494 -7.23832,1,1.43736,0.38494 -7.23832,1,1.43736,0.38494 -6.87616,1,1.43736,0.190542 -6.87616,1,1.43736,0.190542 -6.84519,1,1.43736,0.307601 -6.84519,1,1.43736,0.307601 -6.84519,1,1.43736,0.307601 -8.19006,1,1.43736,0.0851862 -6.75649,1,1.43736,0.266503 -6.75649,1,1.43736,0.266503 -6.75649,1,1.43736,0.266503 -6.75649,1,1.43736,0.266503 -7.89704,1,1.43736,0.462136 -9.50425,1,1.43736,0.0489176 -6.89223,1,1.43736,0.320764 -7.10632,1,1.43736,0.15528 -7.10632,1,1.43736,0.15528 -7.23519,1,1.43736,0.141902 -10.1041,1,1.43736,0.0388008 -7.34984,1,1.43736,0.40047 -7.91618,1,1.43736,0.0970595 -7.91618,1,1.43736,0.0970595 -6.75012,1,1.43736,0.241962 -6.75012,1,1.43736,0.241962 -6.98343,1,1.43736,0.341518 -6.98343,1,1.43736,0.341518 -6.75026,1,1.43736,0.241697 -6.79174,1,1.43736,0.214305 -6.92668,1,1.43736,0.180667 -6.76962,1,1.43736,0.276558 -6.76962,1,1.43736,0.276558 -6.77418,1,1.43736,0.222159 -6.77418,1,1.43736,0.222159 -6.77418,1,1.43736,0.222159 -6.85444,1,1.43736,0.195488 -6.85444,1,1.43736,0.195488 -6.85444,1,1.43736,0.195488 -6.85444,1,1.43736,0.195488 -7.18289,1,1.43736,0.376611 -7.18289,1,1.43736,0.376611 -6.946,1,1.43736,0.177336 -6.90191,1,1.43736,0.323211 -6.90191,1,1.43736,0.323211 -10.7247,1,1.43736,0.0307728 -7.39466,1,1.43736,0.40633 -9.62898,1,1.43736,0.0465812 -8.18152,1,1.43736,0.0855237 -7.03578,1,1.43736,0.351744 -7.03578,1,1.43736,0.351744 -7.03578,1,1.43736,0.351744 -6.90974,1,1.43736,0.18377 -6.90974,1,1.43736,0.18377 -6.90974,1,1.43736,0.18377 -7.26077,1,1.43736,0.388188 -7.26077,1,1.43736,0.388188 -7.26077,1,1.43736,0.388188 -7.26077,2,1.43736,0.388188 -7.26077,1,1.43736,0.388188 -6.82722,1,1.43736,0.301799 -6.74993,1,1.43736,0.257766 -6.74993,1,1.43736,0.257766 -6.74993,1,1.43736,0.257766 -6.74993,1,1.43736,0.257766 -6.92358,1,1.43736,0.328442 -6.82414,1,1.43736,0.300745 -6.81147,1,1.43736,0.207328 -6.81147,1,1.43736,0.207328 -6.77011,1,1.43736,0.22436 -6.82829,1,1.43736,0.302162 -6.82829,1,1.43736,0.302162 -6.74959,1,1.43736,0.257042 -6.74959,1,1.43736,0.257042 -6.82172,1,1.43736,0.204175 -6.82172,1,1.43736,0.204175 -6.82172,1,1.43736,0.204175 -6.82979,1,1.43736,0.201858 -6.84409,1,1.43736,0.19805 -6.84409,1,1.43736,0.19805 -6.84409,1,1.43736,0.19805 -6.82102,1,1.43736,0.204383 -7.41723,1,1.43736,0.126689 -7.33629,1,1.43736,0.39866 -7.33629,1,1.43736,0.39866 -7.33629,1,1.43736,0.39866 -7.33629,1,1.43736,0.39866 -7.33629,1,1.43736,0.39866 -7.33629,2,1.43736,0.39866 -7.33629,1,1.43736,0.39866 -7.33629,1,1.43736,0.39866 -7.33629,1,1.43736,0.39866 -7.33629,1,1.43736,0.39866 -9.10531,1,1.43736,0.0573963 -9.53792,1,1.43736,0.585856 -9.53792,1,1.43736,0.585856 -9.53792,1,1.43736,0.585856 -9.53792,1,1.43736,0.585856 -9.53792,2,1.43736,0.585856 -9.53792,1,1.43736,0.585856 -9.53792,1,1.43736,0.585856 -9.53792,1,1.43736,0.585856 -9.84314,1,1.43736,0.0428693 -7.22694,1,1.43736,0.142681 -7.04384,1,1.43736,0.162942 -7.66136,1,1.43736,0.110542 -8.18617,1,1.43736,0.488784 -8.18617,1,1.43736,0.488784 -8.20624,1,1.43736,0.0845522 -8.20624,1,1.43736,0.0845522 -8.20624,1,1.43736,0.0845522 -8.20624,1,1.43736,0.0845522 -9.48923,1,1.43736,0.0492082 -9.48923,1,1.43736,0.0492082 -9.48923,1,1.43736,0.0492082 -6.81197,1,1.43736,0.20717 -6.81197,1,1.43736,0.20717 -6.74809,1,1.43736,0.248517 -6.79894,1,1.43736,0.211591 -6.79894,1,1.43736,0.211591 -7.04439,1,1.43736,0.162871 -7.04439,1,1.43736,0.162871 -6.79333,1,1.43736,0.213687 -6.76874,1,1.43736,0.225151 -6.76874,1,1.43736,0.225151 -8.21019,1,1.43736,0.0843983 -7.0287,1,1.43736,0.350414 -7.0287,1,1.43736,0.350414 -7.0287,2,1.43736,0.350414 -6.75036,1,1.43736,0.258608 -6.75036,1,1.43736,0.258608 -6.75036,1,1.43736,0.258608 -6.97637,1,1.43736,0.340063 -6.97637,1,1.43736,0.340063 -7.09999,1,1.43736,0.36318 -7.09999,2,1.43736,0.36318 -7.09999,1,1.43736,0.36318 -6.83146,1,1.43736,0.201395 -6.83146,1,1.43736,0.201395 -6.75014,1,1.43736,0.2582 -6.75014,1,1.43736,0.2582 -6.75014,1,1.43736,0.2582 -6.75014,1,1.43736,0.2582 -6.7564,1,1.43736,0.266405 -6.7564,1,1.43736,0.266405 -6.7564,1,1.43736,0.266405 -6.96273,1,1.43736,0.337191 -6.75483,1,1.43736,0.235603 -6.75483,1,1.43736,0.235603 -10.807,1,1.43736,0.0298544 -12.4032,2,1.43736,0.0168497 -7.16383,2,1.43736,0.373635 -7.16383,1,1.43736,0.373635 -7.11127,1,1.43736,0.365089 -7.11127,1,1.43736,0.365089 -8.217,1,1.43736,0.0841342 -8.217,1,1.43736,0.0841342 -8.217,1,1.43736,0.0841342 -8.217,1,1.43736,0.0841342 -8.217,1,1.43736,0.0841342 -8.53721,1,1.43736,0.517656 -8.53721,1,1.43736,0.517656 -6.91865,1,1.43736,0.182115 -7.99834,1,1.43736,0.0932533 -8.22544,1,1.43736,0.492184 -8.19109,1,1.43736,0.0851456 -7.01215,1,1.43736,0.167228 -7.01215,1,1.43736,0.167228 -7.54359,1,1.43736,0.424549 -7.54359,1,1.43736,0.424549 -7.54359,1,1.43736,0.424549 -7.54359,1,1.43736,0.424549 -7.69247,1,1.43736,0.108739 -6.75353,1,1.43736,0.237032 -6.75353,1,1.43736,0.237032 -6.75353,1,1.43736,0.237032 -6.75353,1,1.43736,0.237032 -6.75353,1,1.43736,0.237032 -6.75353,1,1.43736,0.237032 -6.75353,1,1.43736,0.237032 -7.91595,1,1.43736,0.463975 -10.1822,2,1.43736,0.622108 -8.94015,1,1.43736,0.06143 -6.87122,1,1.43736,0.315178 -7.4389,1,1.43736,0.125088 -7.4389,1,1.43736,0.125088 -7.47533,1,1.43736,0.416418 -7.47533,1,1.43736,0.416418 -6.80563,1,1.43736,0.209253 -6.80563,1,1.43736,0.209253 -7.23862,1,1.43736,0.14158 -6.89218,1,1.43736,0.187197 -6.89218,1,1.43736,0.187197 -6.89218,1,1.43736,0.187197 -6.77973,1,1.43736,0.282323 -6.77973,1,1.43736,0.282323 -6.77973,1,1.43736,0.282323 -6.77973,1,1.43736,0.282323 -6.77973,1,1.43736,0.282323 -6.78558,1,1.43736,0.285255 -6.77416,1,1.43736,0.222172 -6.77416,1,1.43736,0.222172 -6.77416,1,1.43736,0.222172 -6.86322,1,1.43736,0.312937 -6.86322,1,1.43736,0.312937 -7.00889,1,1.43736,0.346608 -6.89989,1,1.43736,0.322706 -6.89989,1,1.43736,0.322706 -10.3083,1,1.43736,0.0359238 -10.3083,1,1.43736,0.0359238 -10.3083,1,1.43736,0.0359238 -6.90689,1,1.43736,0.324441 -6.99837,1,1.43736,0.344534 -6.75067,1,1.43736,0.259173 -9.04337,1,1.43736,0.0588691 -6.9233,1,1.43736,0.328376 -6.9233,2,1.43736,0.328376 -6.9233,1,1.43736,0.328376 -6.81761,1,1.43736,0.205408 -6.81237,1,1.43736,0.207041 -6.81237,1,1.43736,0.207041 -7.73018,1,1.43736,0.106618 -7.29705,1,1.43736,0.136335 -6.83853,1,1.43736,0.199489 -6.83853,1,1.43736,0.199489 -6.83853,1,1.43736,0.199489 -6.83853,1,1.43736,0.199489 -6.83853,1,1.43736,0.199489 -6.83853,1,1.43736,0.199489 -6.83853,1,1.43736,0.199489 -6.83853,1,1.43736,0.199489 -6.92482,1,1.43736,0.328733 -7.39494,1,1.43736,0.128377 -7.39494,1,1.43736,0.128377 -7.39494,1,1.43736,0.128377 -7.39494,1,1.43736,0.128377 -7.39494,1,1.43736,0.128377 -7.05025,1,1.43736,0.354416 -6.78849,1,1.43736,0.28663 -7.23579,1,1.43736,0.141846 -6.74803,1,1.43736,0.249374 -6.74803,1,1.43736,0.249374 -6.74803,1,1.43736,0.249374 -7.23286,1,1.43736,0.142121 -11.3412,1,1.43736,0.0245826 -7.49396,1,1.43736,0.418672 -8.78966,2,1.43736,0.536576 -8.78966,1,1.43736,0.536576 -10.6834,1,1.43736,0.0312442 -7.34662,1,1.43736,0.400042 -8.16488,1,1.43736,0.0861865 -7.41127,1,1.43736,0.408454 -7.88646,1,1.43736,0.0984948 -7.88646,1,1.43736,0.0984948 -7.88646,1,1.43736,0.0984948 -7.54422,1,1.43736,0.117807 -7.54422,1,1.43736,0.117807 -9.91073,1,1.43736,0.0417701 -9.91073,1,1.43736,0.0417701 -6.7501,1,1.43736,0.241998 -6.7501,1,1.43736,0.241998 -6.7501,1,1.43736,0.241998 -6.7501,1,1.43736,0.241998 -6.7501,1,1.43736,0.241998 -6.7501,1,1.43736,0.241998 -6.7501,1,1.43736,0.241998 -6.76543,1,1.43736,0.227174 -6.76543,1,1.43736,0.227174 -7.82889,1,1.43736,0.10137 -7.82889,1,1.43736,0.10137 -8.94132,1,1.43736,0.0614003 -8.94132,1,1.43736,0.0614003 -10.01,1,1.43736,0.612886 -9.78188,1,1.43736,0.0438945 -7.45741,1,1.43736,0.12375 -7.45741,1,1.43736,0.12375 -7.45741,1,1.43736,0.12375 -6.74898,1,1.43736,0.25549 -6.74898,1,1.43736,0.25549 -7.20076,1,1.43736,0.379347 -7.20076,1,1.43736,0.379347 -7.20076,1,1.43736,0.379347 -6.76958,1,1.43736,0.276532 -7.19922,1,1.43736,0.379113 -7.19922,1,1.43736,0.379113 -7.55724,1,1.43736,0.116959 -7.20569,1,1.43736,0.380093 -7.20569,1,1.43736,0.380093 -7.20569,1,1.43736,0.380093 -7.20569,1,1.43736,0.380093 -7.20569,1,1.43736,0.380093 -9.12652,1,1.43736,0.0569024 -8.64212,1,1.43736,0.525685 -13.7619,1,1.43736,0.0105082 -7.89152,1,1.43736,0.0982479 -7.89152,1,1.43736,0.0982479 -7.08399,1,1.43736,0.360427 -7.29562,1,1.43736,0.136459 -6.7521,1,1.43736,0.238828 -6.88132,1,1.43736,0.317914 -7.0151,1,1.43736,0.166816 -7.0151,1,1.43736,0.166816 -6.77342,1,1.43736,0.278852 -6.77342,1,1.43736,0.278852 -6.77342,1,1.43736,0.278852 -6.75015,1,1.43736,0.258208 -6.75015,1,1.43736,0.258208 -6.75015,1,1.43736,0.258208 -6.94139,1,1.43736,0.178112 -7.70511,1,1.43736,0.108021 -7.39882,1,1.43736,0.406865 -6.78599,1,1.43736,0.216653 -6.78599,1,1.43736,0.216653 -6.78599,1,1.43736,0.216653 -6.78599,1,1.43736,0.216653 -6.94535,1,1.43736,0.177443 -6.94535,1,1.43736,0.177443 -6.94535,1,1.43736,0.177443 -6.81031,1,1.43736,0.207704 -6.81031,1,1.43736,0.207704 -6.81826,1,1.43736,0.298679 -10.0532,1,1.43736,0.0395576 -7.75151,1,1.43736,0.447454 -7.75151,1,1.43736,0.447454 -7.35552,1,1.43736,0.131469 -7.35552,1,1.43736,0.131469 -7.35552,1,1.43736,0.131469 -6.75184,1,1.43736,0.239178 -6.75184,1,1.43736,0.239178 -6.75184,1,1.43736,0.239178 -7.04699,1,1.43736,0.162532 -8.16957,1,1.43736,0.0859991 -7.16963,1,1.43736,0.374548 -7.16963,1,1.43736,0.374548 -6.74944,1,1.43736,0.243376 -6.74944,1,1.43736,0.243376 -10.376,1,1.43736,0.0350241 -10.5773,1,1.43736,0.0324954 -8.95276,1,1.43736,0.0611097 -6.84715,1,1.43736,0.197277 -6.75196,1,1.43736,0.239018 -6.75196,1,1.43736,0.239018 -6.77888,1,1.43736,0.281876 -6.81229,1,1.43736,0.207067 -6.87986,1,1.43736,0.189748 -6.77113,1,1.43736,0.277493 -6.77113,1,1.43736,0.277493 -6.77095,1,1.43736,0.223888 -6.77095,1,1.43736,0.223888 -7.57177,1,1.43736,0.116026 -6.88845,1,1.43736,0.187956 -7.0468,1,1.43736,0.353783 -7.01275,1,1.43736,0.34736 -9.32256,1,1.43736,0.0525761 -8.94976,1,1.43736,0.0611857 -7.95312,1,1.43736,0.0953195 -7.95312,1,1.43736,0.0953195 -7.80373,1,1.43736,0.452836 -8.47593,1,1.43736,0.0748853 -6.7862,1,1.43736,0.285551 -6.94616,1,1.43736,0.177308 -6.94616,1,1.43736,0.177308 -6.84827,1,1.43736,0.308543 -6.84827,1,1.43736,0.308543 -6.84827,1,1.43736,0.308543 -7.50238,1,1.43736,0.120606 -7.44179,1,1.43736,0.412291 -9.12312,1,1.43736,0.0569813 -6.80285,1,1.43736,0.210205 -6.80285,1,1.43736,0.210205 -6.80285,1,1.43736,0.210205 -6.80285,1,1.43736,0.210205 -6.80285,1,1.43736,0.210205 -7.54702,1,1.43736,0.117624 -6.89124,1,1.43736,0.32051 -6.82615,1,1.43736,0.202885 -10.161,1,1.43736,0.0379736 -10.161,1,1.43736,0.0379736 -9.42455,1,1.43736,0.578944 -9.42455,1,1.43736,0.578944 -7.58846,1,1.43736,0.11497 -7.58846,1,1.43736,0.11497 -7.58846,1,1.43736,0.11497 -6.75863,1,1.43736,0.268497 -7.41721,1,1.43736,0.12669 -8.91359,1,1.43736,0.545389 -8.91359,2,1.43736,0.545389 -8.91359,1,1.43736,0.545389 -9.30859,1,1.43736,0.0528709 -9.80397,1,1.43736,0.601418 -8.98135,1,1.43736,0.0603915 -8.98135,1,1.43736,0.0603915 -7.4555,1,1.43736,0.41399 -7.7784,2,1.43736,0.450242 -7.7784,1,1.43736,0.450242 -8.44219,1,1.43736,0.076009 -8.00458,1,1.43736,0.0929733 -8.00458,1,1.43736,0.0929733 -7.45143,1,1.43736,0.413486 -7.27925,1,1.43736,0.390813 -7.14228,1,1.43736,0.151261 -6.76258,1,1.43736,0.229087 -6.91368,1,1.43736,0.183033 -6.91368,1,1.43736,0.183033 -6.91368,1,1.43736,0.183033 -6.91368,1,1.43736,0.183033 -6.91368,1,1.43736,0.183033 -7.69065,1,1.43736,0.108843 -6.94118,1,1.43736,0.178148 -6.94118,1,1.43736,0.178148 -10.6844,1,1.43736,0.0312338 -6.81364,1,1.43736,0.206639 -6.88808,1,1.43736,0.188031 -6.88808,1,1.43736,0.188031 -6.88808,1,1.43736,0.188031 -6.91856,1,1.43736,0.327258 -6.91856,1,1.43736,0.327258 -6.91856,1,1.43736,0.327258 -6.84873,1,1.43736,0.308681 -6.74803,1,1.43736,0.250412 -6.74803,1,1.43736,0.250412 -6.74803,1,1.43736,0.250412 -6.88425,1,1.43736,0.188825 -6.88425,1,1.43736,0.188825 -6.88425,1,1.43736,0.188825 -7.72715,1,1.43736,0.106786 -7.98894,1,1.43736,0.470938 -8.77322,1,1.43736,0.065877 -8.77322,1,1.43736,0.065877 -7.07061,1,1.43736,0.159543 -7.07061,1,1.43736,0.159543 -7.07061,1,1.43736,0.159543 -6.74887,1,1.43736,0.255185 -6.74887,1,1.43736,0.255185 -6.74887,1,1.43736,0.255185 -7.06189,1,1.43736,0.356522 -6.76203,1,1.43736,0.229476 -6.76203,1,1.43736,0.229476 -6.76203,1,1.43736,0.229476 -6.76203,1,1.43736,0.229476 -6.76203,1,1.43736,0.229476 -6.76203,1,1.43736,0.229476 -9.41405,1,1.43736,0.578295 -9.41405,1,1.43736,0.578295 -9.41405,1,1.43736,0.578295 -9.41405,1,1.43736,0.578295 -9.41405,1,1.43736,0.578295 -9.41405,1,1.43736,0.578295 -9.41405,2,1.43736,0.578295 -9.13186,1,1.43736,0.0567789 -7.06267,1,1.43736,0.356663 -7.28232,1,1.43736,0.391246 -8.54061,1,1.43736,0.51792 -8.54061,1,1.43736,0.51792 -8.54061,1,1.43736,0.51792 -8.54061,1,1.43736,0.51792 -6.75909,1,1.43736,0.268896 -6.75909,1,1.43736,0.268896 -7.50625,1,1.43736,0.420144 -7.50625,1,1.43736,0.420144 -7.34794,1,1.43736,0.132081 -7.34794,1,1.43736,0.132081 -7.34794,1,1.43736,0.132081 -6.90225,1,1.43736,0.185204 -6.90225,1,1.43736,0.185204 -9.77422,1,1.43736,0.0440247 -10.0094,1,1.43736,0.612848 -7.63319,1,1.43736,0.112219 -9.76323,1,1.43736,0.599092 -8.82009,1,1.43736,0.064588 -7.97485,1,1.43736,0.469611 -7.97485,1,1.43736,0.469611 -9.27198,1,1.43736,0.0536528 -7.43065,1,1.43736,0.125693 -7.43065,1,1.43736,0.125693 -7.31723,1,1.43736,0.134616 -7.31723,1,1.43736,0.134616 -7.07577,1,1.43736,0.158909 -7.03575,1,1.43736,0.164007 -7.03575,1,1.43736,0.164007 -7.03575,1,1.43736,0.164007 -7.03575,1,1.43736,0.164007 -7.03575,1,1.43736,0.164007 -6.8078,1,1.43736,0.294787 -8.03675,1,1.43736,0.0915498 -8.03675,1,1.43736,0.0915498 -8.03675,1,1.43736,0.0915498 -6.78942,1,1.43736,0.215233 -6.98214,1,1.43736,0.171593 -6.98214,1,1.43736,0.171593 -6.98214,1,1.43736,0.171593 -7.12789,1,1.43736,0.367848 -7.12789,1,1.43736,0.367848 -7.64663,1,1.43736,0.111414 -7.51835,1,1.43736,0.421582 -7.51835,1,1.43736,0.421582 -7.51835,1,1.43736,0.421582 -7.51835,1,1.43736,0.421582 -7.78968,1,1.43736,0.103404 -7.2222,1,1.43736,0.382564 -7.18112,1,1.43736,0.147184 -6.75836,1,1.43736,0.232319 -6.80985,1,1.43736,0.295571 -6.80985,1,1.43736,0.295571 -6.80985,1,1.43736,0.295571 -6.80985,2,1.43736,0.295571 -6.74989,1,1.43736,0.257686 -7.27562,1,1.43736,0.390301 -7.40357,1,1.43736,0.127718 -6.75351,1,1.43736,0.263245 -6.75351,1,1.43736,0.263245 -7.21477,1,1.43736,0.143847 -7.21477,1,1.43736,0.143847 -6.773,1,1.43736,0.222781 -6.75855,1,1.43736,0.268426 -6.83801,1,1.43736,0.199627 -8.01345,1,1.43736,0.473231 -7.98416,1,1.43736,0.0938939 -7.70452,1,1.43736,0.442494 -7.47855,1,1.43736,0.122254 -6.96599,1,1.43736,0.337883 -6.96599,1,1.43736,0.337883 -6.96599,1,1.43736,0.337883 -7.26726,1,1.43736,0.138958 -7.26726,1,1.43736,0.138958 -7.26726,1,1.43736,0.138958 -9.84371,1,1.43736,0.0428599 -8.44399,1,1.43736,0.510305 -8.44399,1,1.43736,0.510305 -8.44399,1,1.43736,0.510305 -8.44399,1,1.43736,0.510305 -8.44399,1,1.43736,0.510305 -8.04014,1,1.43736,0.091402 -6.85469,1,1.43736,0.310465 -6.85469,2,1.43736,0.310465 -7.64156,1,1.43736,0.111716 -7.76423,1,1.43736,0.448777 -7.76423,1,1.43736,0.448777 -7.76423,1,1.43736,0.448777 -9.7007,1,1.43736,0.0452978 -9.7007,1,1.43736,0.0452978 -8.68839,1,1.43736,0.52915 -8.68839,1,1.43736,0.52915 -6.98119,1,1.43736,0.341058 -6.98119,1,1.43736,0.341058 -6.87685,1,1.43736,0.316715 -8.03738,1,1.43736,0.0915226 -8.03738,1,1.43736,0.0915226 -8.03738,1,1.43736,0.0915226 -6.91143,1,1.43736,0.183452 -6.85026,1,1.43736,0.196505 -6.75603,1,1.43736,0.266039 -6.75603,1,1.43736,0.266039 -6.75603,1,1.43736,0.266039 -6.75603,1,1.43736,0.266039 -6.75901,1,1.43736,0.268824 -6.75901,1,1.43736,0.268824 -6.75901,1,1.43736,0.268824 -6.75901,1,1.43736,0.268824 -6.75901,1,1.43736,0.268824 -6.75901,1,1.43736,0.268824 -7.11761,1,1.43736,0.153992 -6.7946,1,1.43736,0.28938 -6.93437,1,1.43736,0.330937 -7.33942,1,1.43736,0.39908 -7.33942,1,1.43736,0.39908 -7.21876,1,1.43736,0.143462 -7.30286,1,1.43736,0.394106 -7.30286,1,1.43736,0.394106 -6.79329,1,1.43736,0.213705 -6.79329,1,1.43736,0.213705 -6.76947,1,1.43736,0.224724 -6.76947,1,1.43736,0.224724 -6.76947,1,1.43736,0.224724 -6.76947,1,1.43736,0.224724 -6.76947,1,1.43736,0.224724 -6.76947,1,1.43736,0.224724 -6.76071,1,1.43736,0.230445 -6.76071,1,1.43736,0.230445 -6.84945,1,1.43736,0.308901 -7.17531,1,1.43736,0.147777 -7.17531,1,1.43736,0.147777 -7.17531,1,1.43736,0.147777 -6.78305,1,1.43736,0.217925 -6.98688,1,1.43736,0.342223 -6.98688,1,1.43736,0.342223 -6.98688,1,1.43736,0.342223 -7.01065,1,1.43736,0.167439 -7.01065,1,1.43736,0.167439 -7.01065,1,1.43736,0.167439 -6.84856,1,1.43736,0.308631 -7.55917,1,1.43736,0.426357 -7.55917,1,1.43736,0.426357 -7.55917,1,1.43736,0.426357 -8.62265,1,1.43736,0.0702498 -7.20557,1,1.43736,0.380075 -7.20557,1,1.43736,0.380075 -7.20557,1,1.43736,0.380075 -6.83101,1,1.43736,0.201521 -6.83101,1,1.43736,0.201521 -6.83101,1,1.43736,0.201521 -6.83101,1,1.43736,0.201521 -8.51225,1,1.43736,0.0737007 -7.47216,1,1.43736,0.122703 -6.75933,1,1.43736,0.269107 -6.75933,1,1.43736,0.269107 -6.75949,1,1.43736,0.26924 -6.75949,1,1.43736,0.26924 -6.75949,1,1.43736,0.26924 -7.23126,1,1.43736,0.383903 -7.23126,1,1.43736,0.383903 -7.23126,1,1.43736,0.383903 -7.1229,1,1.43736,0.153395 -7.1229,1,1.43736,0.153395 -7.1229,1,1.43736,0.153395 -7.23414,1,1.43736,0.142001 -6.88081,1,1.43736,0.189547 -6.88081,1,1.43736,0.189547 -6.88081,1,1.43736,0.189547 -7.2293,1,1.43736,0.142457 -6.88947,1,1.43736,0.187746
import pandas as pd
df = pd.read_csv('samples.csv', skiprows=27, header=None)
df.columns = 'lp__,treedepth__,stepsize__,theta'.split(',')
df.head()
lp__ | treedepth__ | stepsize__ | theta | |
---|---|---|---|---|
0 | -6.85846 | 1 | 1.43736 | 0.194532 |
1 | -7.96891 | 1 | 1.43736 | 0.469048 |
2 | -8.72278 | 1 | 1.43736 | 0.067301 |
3 | -6.76010 | 1 | 1.43736 | 0.269756 |
4 | -7.37097 | 1 | 1.43736 | 0.130240 |
plot(df.theta)
[<matplotlib.lines.Line2D at 0x3490550>]
acorr(df.theta, detrend=detrend_mean, maxlags=100);
It seems to work, that is good.
!date
Wed Mar 6 15:00:53 PST 2013