In [1]:
from IPython.core.display import Latex

out = """$$\\text{When examining the moment we find:}$$
$$\\text{For the range 0 to 12 the following equation holds}$$
$$x \\left(- 60.0 x + 720.0\\right)$$ 
$$\\text{Local minima and maxima are to be found at [0, 6.00000000000000, 12]}$$ 
$ $
$$\\text{When examining the moment we find:}$$
$$\\text{For the range 12 to 12 the following equation holds}$$
$$x \\left(- 60.0 x + 720.0\\right)$$ 
$$\\text{Local minima and maxima are to be found at [12, 12]}$$ 
$ $ 
$$\\text{When examining the shear we find:}$$
$$\\text{For the range 0 to 12 the following equation holds}$$
$$- 120 x + 720.0$$ 
$$\\text{Local minima and maxima are to be found at [0, 12]}$$ 
$ $ 
$$\\text{When examining the shear we find:}$$
$$\\text{For the range 12 to 12 the following equation holds}$$
$$- 120 x + 720.0$$ 
$$\\text{Local minima and maxima are to be found at [12, 12]}$$ $ $ """

Latex(out)
Out[1]:
$$\text{When examining the moment we find:}$$ $$\text{For the range 0 to 12 the following equation holds}$$ $$x \left(- 60.0 x + 720.0\right)$$ $$\text{Local minima and maxima are to be found at [0, 6.00000000000000, 12]}$$ $ $ $$\text{When examining the moment we find:}$$ $$\text{For the range 12 to 12 the following equation holds}$$ $$x \left(- 60.0 x + 720.0\right)$$ $$\text{Local minima and maxima are to be found at [12, 12]}$$ $ $ $$\text{When examining the shear we find:}$$ $$\text{For the range 0 to 12 the following equation holds}$$ $$- 120 x + 720.0$$ $$\text{Local minima and maxima are to be found at [0, 12]}$$ $ $ $$\text{When examining the shear we find:}$$ $$\text{For the range 12 to 12 the following equation holds}$$ $$- 120 x + 720.0$$ $$\text{Local minima and maxima are to be found at [12, 12]}$$ $ $
In [ ]: