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ABSTRACT

The LMS algorithm is one of the most popular adaptive filter al-
gorithms. Many variants of the algorithm have been developed for
different applications. In this paper, we propose a unified model-
based approach for developing LMS algorithms. We use a number
of probability density functions to model the filtering error and the
filter coefficients. The filter coefficients are determined by max-
imizing the posterior distribution function. We demonstrate that
using this approach, we can not only develop existing LMS algo-
rithms with further insights, we can also explore a number of new
algorithms with certain desired properties such as robustness and
sparseness.

1. INTRODUCTION

The classical LMS algorithm [1, 2] can be summarized as the fol-
lowing. Given the input data vectorx of M elements, the desired
scaler outputy, a linear model

y = wT x + e (1)

and the filter coefficient vectors from the previous iteration, the
current coefficient vector is given by

w = s− µêx (2)

whereµ is an adaptation constant that determines the step-size of
the update and̂e = sT x− y. We also define the difference vector
r = w − s. Themth element of the vectorw is denoted bywm.
The same notation is used for other vectors.

In the following, we briefly review optimization-based research
and recent developments in LMS algorithm related to this work.
A representative example of formulating the development of the
LMS algorithm as a constrained optimization problem is that of
the normalized LMS algorithm [1], which is generalized in [3]. In
a recent paper [4], the sparsity of the coefficient vector is consid-
ered and algorithms are developed based on solutions to a num-
ber of constrained optimization problems. LMS algorithms with
sparse coefficient vectors, which arise from echo-cancellation ap-
plication [5], have been proposed by researchers using the expo-
nentiated gradient [6], the natural gradient [7] and the approxi-
mate natural gradient [8]. On the other hand, an LMS algorithm,
which is robust to outliers, is desirable in many applications. Ro-
bustness can be achieved, from an algorithm development point
of view, by using Huber’s M-estimator [9] to measure the filtering
error [10,11], or by using a mixed-norm for the error [12].

This study is motivated by the optimization approach for the
LMS algorithm development. We formulate the problem of de-
veloping an LMS algorithm as a maximum a posterior estimation

(MAP) problem. A distinctive advantage of this formulation is that
it is a unified approach by which a wide range of existing LMS
algorithms in their generalized form can be derived. These algo-
rithms include the classical LMS, the normalized LMS, the signed
LMS [2], the proportionate LMS and the proportionate normalized
LMS [4, 5]. This approach also opens new pathways to explore
different model settings that lead to LMS algorithms with desired
properties such as sparseness and robustness. The sparseness and
robustness constraints are imposed naturally by specifying suit-
able prior distributions for the coefficient vector and the likelihood
functions for the data [13–15].

2. PROBLEM FORMULATION

We formulate the problem of determining the filter coefficient vec-
tor w as a maximum a posteriori (MAP) estimation problem

ŵ = arg max
w

p(w|y, s,H) (3)

whereH represents the assumptions about the statistical model of
the modelling errors and the prior model for the filter coefficients.
Using Bayes’ theorem, we can write

p(w|y, s,H) ∝ p(y|w,H)p(s|w,H)p(w|H) (4)

Since it is easier to work with the logarithm of the conditional
density function, we define the following cost function

J(w) = − log p(w|y, s,H)
= − log p(y|w,H)− log p(s|w,H)− log p(w|H)

(5)
Note that we have omitted unrelated constants in the cost function.
To obtain a MAP estimation ofw, we calculate the gradient of the
cost function and set the result to zero.

Statistical models may be specified according to different con-
siderations. For example, a Gaussian distribution can be used to
model the filtering error. If robustness to outliers is required, we
could use other distribution functions such as Laplacian and Hu-
ber’s M-estimator to model the error. The second term in the cost
function is mainly responsible for the smoothness constraint for
the filter coefficient vector from the previous iteration to the cur-
rent iteration. This constraint can be imposed by using a Gaussian
distribution or a generalized Gaussian. It also affects the conver-
gence rate as well as the stability of the iterative algorithm. Gen-
erally speaking, tightening this distribution increases smoothness
and improves stability of the iteration at the expense of the con-
vergence rate. The last term in the cost function is related to the
prior distribution of the filter coefficients. The simplest choice is



p(y|w,H) p(s|w,H) p(w|H)

Section 3 Gaussian Gaussian uniform
Section 4 Laplacian, M-est. Gaussian uniform
Section 5 Gaussian gen. Gaussian uniform
Section 6 Gaussian Gaussian gen. Gaussian

Table 1. Model settings in sections 3 to 6.

the uniform distribution which makes the last term a constant. Us-
ing the uniform prior, the MAP estimation problem reduces to a
maximum likelihood (ML) estimation problem.

However, interesting algorithms can be derived by setting the
prior distribution to Gaussian, Laplacian and generalized Gaus-
sian. Such settings are well justified in terms of controlling the
model complexity to avoid over-fitting the data [14]. Due to space
limitation, we only present algorithmic development results with
certain model settings shown in Table 1. Other combinations of
model settings can be studied following similar methods outlined
in this paper.

3. ALGORITHMS BASED ON GAUSSIAN MODELS AND
UNIFORM PRIOR

The cost function, ignoring the constants, can be expressed as

J(w) =
β

2
(wT x− y)2 +

1

2
rT A−1r (6)

whereσ2
e = 1/β, is the variance of the modelling error, andA is

the co-variance matrix.

3.1. Algorithms without error approximation

The MAP estimate of the filter coefficient vector is given by

w = s− βê

1 + βxT Ax
Ax (7)

In a special case whereA−1 = diag[αm], the filter coefficients
are updated according to

wm = sm − µm

1 +
∑M

k=1
µkx2

k

êxm (8)

whereµm = β/αm, which is the signal (coefficient) variance to
noise variance ratio. In another special case whereA = σ2

wI, we
have

w = s− µ

1 + µ
∑M

k=1
x2

k

êx (9)

whereµ = σ2
w/σ2

e . Equation (9) represents a normalised LMS
(NLMS) algorithm which is a special case of that represented by
equation (8). We note that in the above development of the NLMS
algorithm, the step-sizeµ is introduced as a natural result of the
MAP optimization process. This is in contrast to the development
in [1], by which the step-sizeµ is not a result of the optimization.

3.2. Algorithms with error approximation

The classical LMS algorithm can be derived when we use the ap-
proximatione ≈ ê

∇J(w) = βex + A−1r

≈ βêx + A−1r (10)

Therefore we have
w = s− βêAx (11)

In a special case whereA−1 = diag[αm], the filter coefficients
are updated according to

wm = sm − µmêxm (12)

whereµm = β/αm. This is the classical LMS algorithm with
an individual adaptation constant for each filter coefficient. In an-
other special case whereA = σ2

wI, we have the classical LMS
algorithm

w = s− µêx (13)

whereµ = σ2
w/σ2

e .
To summarize, we can see that the classical LMS and the

NLMS algorithms can be easily derived from the MAP approach.
In both algorithms, the adaptation step-sizeµ is expressed as the
ratio of the coefficient variance to that of the error. As such, when
we know the noise varianceσ2

e , µ is determined byσ2
w. On the

other hand, whenσ2
w is fixed,µ can be estimated in each iteration

through the estimation of the noise variance.

4. ROBUST LMS ALGORITHMS

In this section, we study LMS algorithms that are robust to a small
number of large errors. We consider two models for the error:
Laplacian and Huber’s M-estimator. A Gaussian model is assumed
for the filter coefficient vector, and to simplify our discussion in
sub-section (4.2) , we assume thatA = σ2

wI (see equation (14)).

4.1. LMS algorithms based on Laplacian distribution

The cost function is given by

J(w) = α|wT x− y|+ 1

2
rT A−1r (14)

We consider two cases. In the first case wheree = 0, the problem
becomes the following constrained optimization problem

mimimize 1
2
rT A−1r

subject to wT x = y
(15)

This is the problem used in the original development of the NLMS
algorithm.

In the second case, we considere 6= 0. We have the following
results

∇J(w) = βsign(e)x + A−1r = 0 (16)

This equation is equivalent to the following equation

e = ê− βsign(e)xT Ax (17)

It can be easily shown that for the above equation to have a solu-
tion, the following conditions must be satisfied

|ê| > βxT Ax (18)

and
sign(e) = sign(ê) (19)

Therefore, we have the MAP estimate forw

w = s− βsign(ê)Ax (20)

WhenA = σ2
wI, we have the so-called signed-LMS algorithm

w = s− µsign(ê)x (21)

whereµ = σ2
w/σ2

e .



4.2. LMS algorithms based on the M-estimator

Using Huber’s formulation of M-estimator [9], the cost function is
given by

J(w) = ρ

(
wT x− y

σe

)
+

1

2σ2
w

rT r (22)

where

ρ(t) =

{
1
2
t2, if |t| ≤ γ

γ|t| − 1
2
γ2, if |t| > γ

(23)

Following the same procedure, we have the following results

w =

{
s− µ

ê

1 + µxT x
x, if |ê| ≤ δ

s− µγσesign(ê)x, if |ê| > δ
(24)

whereµ = σ2
w/σ2

e andδ = γσe(1 + µxT x). We can see that the
above LMS algorithm switches between the two update options:
the normalized LMS and signed-LMS. The switch is controlled
by previous modelling error and the three parametersσ2

e , σ2
w and

γ. If the first two parameters are fixed, then the behaviour of the
algorithm is mainly controlled byγ. If the value ofγ is sufficiently
large, then the algorithm is mainly a normalized LMS algorithm.
On the other hand, if it is sufficiently small, then the algorithm is
mainly a signed LMS algorithm.

5. PROPORTIONATE LMS ALGORITHMS

In this section, we consider a Gaussian model for the modelling
error and a generalized Gaussian model for the filter coefficients

p(w|s,H) = c exp

(
−α

M∑
m=1

|rm|p
)

(25)

wherec is a normalization constant,α andp are two parameters.
The Gaussian and Laplacian distributions are special cases where
p = 2 andp = 1. When0 ≤ p ≤ 1, it has been demonstrated
that sparse solutions are possible [15–17]. The cost function and
its gradient are given by

J(w) =
β

2
e2 + α

M∑
m=1

|rm|p (26)

and
∇J(w) = βex + pαD−1r (27)

whereD = diag[|rm|2−p]. Determining a vectorw that min-
imizes J(w) for p 6= 2 is not a trivial problem. Forp = 1,
the problem can be casted as a second order cone program [18].
An alternative way is to use the idea of iterative re-weighted least
squares [19] which iteratively solves equation (27) forw by as-
suming a fixed matrixD. However, both methods require substan-
tial amount of computation when compared to that required by the
classical LMS algorithm.

In order to simplify the algorithm, we follow a similar idea as
that of the EM algorithm [20] and replace the elements ofD with
their respective minimum mean square error estimate

âm =

∫
|rm|2−pp(wm|y, sm,H)dwm. (28)

As such, we havêD = diag[âm]. In order to obtain a closed-
form solution, we use Taylor series as an approximation

|wm − sm|2−p ≈ |sm|2−p + (2− p)
|sm|2−p

sm
wm (29)

With this approximation, we can show that

âm = (3− p)|sm|2−p (30)

Therefore, the MAP estimate is given by

w = s− ê
pα
β

+ xT D̂x
D̂x (31)

It is interesting to note that when we use error approximatione ≈ ê
in equation (27), we have

w = s− β

pα
êD̂x (32)

When we substitutêam into equations (31) and (32), we have the
following updating equations

wm = sm − ê
pα

(3−p)β
+

∑M

k=1
|sk|2−px2

k

|sm|2−pxm (33)

and

wm = sm − (3− p)β

pα
|sm|2−pêxm (34)

We see that equations (33) and (34) represent a family of the
proportionate normalized LMS (PNLMS) and the proportionate
LMS (PLMS) algorithms, respectively. We can also see that the
two equations (31) and (7) are similar. In fact, whenp = 2, equa-
tion (31) is in the same form as equation (9). However, there is a
distinctive difference between the two. In equation (7), the matrix
A is a co-variance matrix with free parameters that serve as adap-
tation constants. On the other hand, in equation (31), the matrix
D̂ is a diagonal matrix whose elements are given by equation (30).
This leads to different results for different settings ofp. Therefore,
equation (7) represents a general proportionate normalized LMS
algorithm (PNLMS) with matrixA to be specified, while equation
(31) represents a specific PNLMS algorithm.

6. LMS ALGORITHM WITH SPARSITY CONSTRAINT

In this section, we consider Gaussian models for the filtering error
and the smoothness constraint, and a generalized Gaussian distri-
bution for the prior density. We have the general form of the cost
function

J(w) =
1

2
βe2 +

1

2
αrT r +

1

p
γ||w||p (35)

where||w||p =
∑M

m=1
|wm|p, 0 ≤ p ≤ 1. The gradient is given

by
∇J(w) = βex + α(w − s) + γBw (36)

whereB = diag[|wm|p−2].
It can be seen that setting equation (36) to zero results in a set

of nonlinear equations. A closed form solution forw is not possi-
ble. We study a solution based on two approximations:e ≈ ê and
B ≈ diag[|sm|p−2]. With these approximations, we can derive an
update-equation for each element of the coefficient vector

wm = ηm(sm − β

α
êxm) (37)
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Fig. 1. The nonlinear relationship betweensm (horizontal axis)
andηm (vertical axis). In the left panel, we fixa = α/γ = 1 and
plot three casesp = 1, 0.5, 0.1. In the right panel, we fixp = 0.5
and plot three cases whereα/γ = 4, 1, 0.5.

where

ηm = 1− 1
α
γ
|sm|2−p + 1

(38)

We can see that this is a shrinkage-version of the classical LMS
algorithm. The shrinking factor isηm. The ratioα/γ controls the
relative weighting we impose on the two constraints. The shrink-
ing factorηm reduces towards 0 as|sm| decreases. Noting that
wm andsm are the current and previous results from iterative al-
gorithm,wm = 0 is a fixed point of the nonlinear update equation.
Furthermore,ηm ≈ α

γ
|sm|2−p when |sm| is sufficiently small,

whencewm = 0 is a stable attractor as long asα
γ

< 1. Conse-
quently, robust sparseness becomes a built-in property of the iter-
ation.

To understand the role of the shrinking factor, we plot it as
a function ofsm under different conditions. In the left panel of
Figure 1, we showηm as a function ofsm. We fix α/γ = 1 and
plot three cases wherep = 1, 0.5, 0.1. In the right panel, we fix
p = 0.5 and plot three cases whereα/γ = 4, 1, 0.5. We can
see that there is nonlinear relationship betweenηm and sm. A
smaller value of|sm| leads to a smallerηm, which makes a larger
shrinkage.

7. CONCLUSION

In this paper, we propose a unified approach for developing the
LMS algorithms. We formulate the problem as an MAP estima-
tion problem which permits us to explore different model settings
based on practical considerations. In particular, we have developed
several well known LMS algorithms as well as algorithms that are
results of MAP optimization with desirable constraints such as ro-
bustness and sparseness.
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