Developed by Randy LeVeque for a course on Approximation Theory and Spectral Methods at the University of Washington.
See http://faculty.washington.edu/rjl/classes/am590a2013/codes.html for more IPython Notebook examples.
This notebook demonstrates using the Matlab Chebfun package to solve 2-point boundary value problems via a Chebyshev spectral method, following the examples in Chapter 21 of
For more about how to do this, see
First we need to set things up to use Matlab and set the path to find chebfun.
You must have pymatbridge installed and chebfun available for this to work.
import pymatbridge
ip = get_ipython()
pymatbridge.load_ipython_extension(ip)
%%matlab
path(path,'/Users/rjl/chebfun/chebfun_v4.2.2889/chebfun')
Define the chebfun x and the linear operator ∂2x+I with Dirichlet boundary conditions:
%%matlab
x = chebfun('x');
L = chebop(@(u) diff(u,2) + u)
L = chebop Linear operator operating on chebfuns defined on: interval [-1,1] representing the operator: @(u)diff(u,2)+u with n = 6 realization: 42.6000 -68.3607 40.8276 -23.6393 17.5724 -8.0000 21.2859 -30.5331 12.6833 -3.6944 2.2111 -0.9528 -1.8472 7.3167 -9.0669 5.7889 -1.9056 0.7141 0.7141 -1.9056 5.7889 -9.0669 7.3167 -1.8472 -0.9528 2.2111 -3.6944 12.6833 -30.5331 21.2859 -8.0000 17.5724 -23.6393 40.8276 -68.3607 42.6000
Now let's specify some boundary conditions:
%%matlab
uleft = 3.;
uright = 4;
L.lbc = uleft;
L.rbc = uright;
Note that this changes the 6×6 matrix shown: the first 4 rows now map function values at 6 Chebyshev points to values of Lu at 4 Chebyshev points...
%%matlab
L
L = chebop Linear operator operating on chebfuns defined on: interval [-1,1] representing the operator: @(u)diff(u,2)+u left boundary condition: 3 right boundary condition: 4 with n = 6 realization: 33.0353 -51.2657 27.8620 -14.2070 10.1514 -4.5760 -0.6075 5.7509 -9.1443 6.9332 -3.2805 1.3482 1.3482 -3.2805 6.9332 -9.1443 5.7509 -0.6075 -4.5760 10.1514 -14.2070 27.8620 -51.2657 33.0353 1.0000 0 0 0 0 0 0 0 0 0 0 1.0000
Specify the right hand side in the ODE u″(x)+u(x)=f(x):
%%matlab
f = 0*x
f = chebfun column (1 smooth piece) interval length endpoint values [ -1, 1] 1 0 0 vertical scale = 0
%%matlab
g = L\f
plot(g,'r')
title('The Chebfun solution')
g = chebfun column (1 smooth piece) interval length endpoint values [ -1, 1] 29 3 4 vertical scale = 6.5
In this case we know the exact solution is a linear combination of sin(x) and cos(x) and the boundary conditions give us a 2×2 linear system to solve for the coefficients:
%%matlab
A = [cos(-1) sin(-1); cos(1) sin(1)];
b = [uleft; uright];
c = A\b;
u = c(1)*cos(x) + c(2)*sin(x);
error = max(abs(u-g))
plot(u)
title('The exact solution')
error = 1.232273452396662e-11
Next we solve the problem in (21.4) of [ATAP]: u″−xu=0,u(−30)=1, u(30)=0.
%%matlab
L = chebop(@(x,u) diff(u,2) - x.*u, [-30,30]);
L.lbc = 1; L.rbc = 0; u = L\0;
plot(u)
u
u = chebfun column (1 smooth piece) interval length endpoint values [ -30, 30] 184 1 2.2e-16 vertical scale = 6.1
Finally we solve (21.5a) and (21.5b), the nonlinear pendulum problem θ″+sin(θ)=0,θ∈[0,6]
%%matlab
N = chebop(0,6);
N.op = @(theta) diff(theta,2) + sin(theta);
%%matlab
N.lbc = -pi/2;
N.rbc = pi/2;
theta = N\0
theta = chebfun column (1 smooth piece) interval length endpoint values [ 0, 6] 70 -1.6 1.6 vertical scale = 5.4
%%matlab
plot(-cos(theta)), grid on, ylim([-1 1])
title('Nonlinear pendulum (21.5)','fontsize',20)
xlabel('t','fontsize',20), ylabel('height -cos(\theta)','fontsize',20)
With different boundary conditions:
%%matlab
N.lbc = -pi/2; N.rbc = 5*pi/2; theta = N\0;
plot(-cos(theta)), grid on, ylim([-1 1])
title('Nonlinear pendulum (21.5), another solution','fontsize',20)
xlabel('t','fontsize',20), ylabel('height -cos(\theta)','fontsize',20)
Note that theta increases past π, indicating the pendulum goes past the vertical and then back down:
%%matlab
plot(theta)
Solve u″(x)+u(x)=exp(x)
%%matlab
L = chebop(@(u) diff(u,2) + u,[0,2],@(u) u-3,@(u) diff(u)-1)
L = chebop Linear operator operating on chebfuns defined on: interval [0,2] representing the operator: @(u)diff(u,2)+u left boundary condition: @(u)u-3 = 0 right boundary condition: @(u)diff(u)-1 = 0 with n = 6 realization: 33.0353 -51.2657 27.8620 -14.2070 10.1514 -4.5760 -0.6075 5.7509 -9.1443 6.9332 -3.2805 1.3482 1.3482 -3.2805 6.9332 -9.1443 5.7509 -0.6075 -4.5760 10.1514 -14.2070 27.8620 -51.2657 33.0353 1.0000 0 0 0 0 0 -0.5000 1.1056 -1.5279 2.8944 -10.4721 8.5000
%%matlab
f = chebfun('exp(x)', [0,2]);
u = L\f
u = chebfun column (1 smooth piece) interval length endpoint values [ 0, 2] 23 3 3.6 vertical scale = 3.6
%%matlab
plot(u)
Clearly u(0)=3. Check that u′(2)=1:
%%matlab
uprime = diff(u);
uprime(2)
ans = 1.000000000001889
Plot residual u″(x)−u(x)−ex:
%%matlab
residual = diff(uprime) + u - f;
max_residual = max(abs(residual))
plot(residual)
max_residual = 4.465903202799382e-10