or
(h∗x)(t)=∫∞−∞h(τ)x(t−τ)dτIllustration: [1]
from IPython.display import HTML
HTML('<iframe src=http://mathworld.wolfram.com/images/gifs/convrect.gif width=300 height=260></iframe>')
from IPython.display import HTML
HTML('<iframe src=http://mathworld.wolfram.com/images/gifs/convgaus.gif width=300 height=260></iframe>')
def step(t, t_0):
return 1 * ((t - t_0) >= 0)
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
t = np.arange(-4.0, 4.0, 0.01)
x = step(t,0)
h = step(t,0)
fig = plt.figure(figsize=(12,4))
plt.subplot(1, 2, 1)
plt.plot(t,x,'g-',linewidth=6);
plt.title('Input signal, $x(t)$')
plt.xlabel('t')
plt.subplot(1, 2, 2)
plt.plot(t,h,'r-',linewidth=6);
plt.title('Impulse response, $h(t)$')
plt.xlabel('t');
t = np.arange(-4.0, 4.0, 0.01)
h = step(-t, 0)
fig = plt.figure(figsize=(12,4))
plt.plot(t,h,'r-',linewidth=6);
plt.title('Impulse response, $h(-\u03c4)$ at t = 0')
plt.xlabel('T');
t = np.arange(-4.0, 4.0, 0.01)
h = step(-t, -0.5)
x = step(t, 0)
fig = plt.figure(figsize=(12,4))
ax1 = fig.add_axes([0, 0, 1, 1]) # [left, bottom, width, height]
plt.plot(t,h,'r-',linewidth=6);
plt.plot(t,x,'g-',linewidth=6);
plt.title('Impulse response, $h(-\u03c4)$ at t = 0.5 with the input signal, $u(t)$')
plt.xlabel('T');
ax1.fill_between(t,0,h,where=x==h,color='black');
ax1.annotate('$t$', xy=(0.5, 0), xytext=(0.6, 0.1),
arrowprops=dict(facecolor='yellow', shrink=0.05),
)
<matplotlib.text.Annotation at 0xb00f372c>
Notice that the time reversed Impulse response, u(−τ), starts intersecting the signal, which is also a unit step, u(τ), at τ=0 until τ=t.
Thus,
(x∗h)(t)=∫t0x(τ)h(t−τ)dτt = np.arange(-4.0, 4.0, 0.01)
# input
x = step(t,0)
# impulse response
h = step(t,0)
# result
result = np.zeros(len(t))
result = t * (step(t,0))
fig = plt.figure(figsize=(16,4))
plt.plot(t,x,'go-',linewidth=5, label='Input signal, $x(t)$');
plt.plot(t,h,'rd-',linewidth=1, label='Impulse response, $h(t)$');
plt.plot(t,result,'b-',linewidth=3, label='Output signal, $y(t)$');
plt.xlabel('t')
plt.grid()
legend = plt.legend(loc='upper left');
t = np.arange(-4.0, 4.0, 0.01)
x = step(t,1) - step(t,3)
h = (t + 2)*(step(t,-2) - step(t,-1))
fig = plt.figure(figsize=(12,4))
plt.subplot(1, 2, 1)
plt.plot(t,x,'g-',linewidth=5);
plt.title('Input signal, $x(t)$')
plt.xlabel('t')
plt.subplot(1, 2, 2)
plt.plot(t,h,'r-',linewidth=3);
plt.title('Impulse response, $h(t)$')
plt.xlabel('t');
t = np.arange(-4.0, 4.0, 0.01)
h = (-t + 2)*(step(t,1) - step(t,2))
fig = plt.figure(figsize=(12,4))
plt.plot(t,h,'r-',linewidth=3);
plt.title('Impulse response, $h(-\u03c4)$ at t = 0')
plt.xlabel('T');
Note: This is the h(t−τ) at t=0 and the signal starts at τ=t+1 and ends at τ=t+2.
t = np.arange(-4.0, 4.0, 0.01)
h_4 = (-t - 2)*(step(t,-3) - step(t,-2))
h_3 = (-t - 1)*(step(t,-2) - step(t,-1))
h_2 = (-t - 0)*(step(t,-1) - step(t,-0))
h_1 = (-t + 1)*(step(t,0) - step(t,1))
fig = plt.figure(figsize=(16,4))
plt.plot(t,h_4,'r-',linewidth=3, label="$t=-4$");
plt.plot(t,h_3,'c-',linewidth=3, label="$t=-3$");
plt.plot(t,h_2,'m-',linewidth=3, label="$t=-2$");
plt.plot(t,h_1,'y-',linewidth=3, label="$t=-1$");
plt.title('Impulse response, $h(-(\u03c4 - t))$ at t = -4,-3,-2,-1, with the input signal, $x(t)$')
plt.plot(t,x,'g-',linewidth=5, label="$x(t)$");
plt.xlabel('T');
legend = plt.legend()
t = np.arange(-4.0, 4.0, 0.01)
h_half = (-t + 1.5)*(step(t,0.5) - step(t,1.5))
fig = plt.figure(figsize=(12,2.5))
ax1 = fig.add_axes([0, 0, 1, 1]) # [left, bottom, width, height]
plt.plot(t,h_half,'r-',linewidth=3, label="$t=0.5$");
plt.title('Impulse response, $h(-(\u03c4 - t))$ at t = -0.5, with the input signal, $x(t)$')
plt.plot(t,x,'g-',linewidth=5, label="$x(t)$");
plt.xlabel('T');
ax1.fill_between(t,0,h_half,where=x>=h_half,color='black')
ax1.annotate('$t + 2$', xy=(1.5, 0), xytext=(1.6, 0.1),
arrowprops=dict(facecolor='yellow', shrink=0.05),
)
ax1.annotate('same \n length \n as \n base', xy=(1, 0.2), xytext=(0.55, 0.2),
arrowprops=dict(facecolor='yellow'),
)
ax1.annotate('t+2-1', xy=(1.25, 0), xytext=(1.1, -0.15),
arrowprops=dict(facecolor='yellow', shrink=0.05),
)
legend = plt.legend()
The overlap starts at τ=1 and ends at τ=t+2. Recall that the impulse response ends at t+2. Thus,
In the above interval, x(τ)=1 and h(t−τ)=−τ+t+2.
or y(t)=12(t+1)2
Alternatively, this can be evaluated by the triangle area:
t = np.arange(-4.0, 4.0, 0.01)
h_half = (-t + 2.5)*(step(t,1.5) - step(t,2.5))
fig = plt.figure(figsize=(12,2.5))
ax1 = fig.add_axes([0, 0, 1, 1]) # [left, bottom, width, height]
plt.plot(t,h_half,'r-',linewidth=3, label="$h$ at $t=0.5$");
plt.title('Impulse response, $h(-(\u03c4 - t))$ at t = -0.5, with the input signal, $x(t)$')
plt.plot(t,x,'g-',linewidth=5, label="$x(t)$");
plt.xlabel('T');
ax1.fill_between(t,0,h_half,where=x>=h_half,color='black')
legend = plt.legend(loc='center')
ax1.annotate('$t + 2$', xy=(2.5, 0), xytext=(2.6, 0.1),
arrowprops=dict(facecolor='yellow', shrink=0.05),
)
ax1.annotate('$t + 1$', xy=(1.5, 0), xytext=(1.2, 0.1),
arrowprops=dict(facecolor='yellow', shrink=0.05),
);
The overlap starts at τ=t+1 and ends at τ=t+2.
In the above interval, x(τ)=1 and h(t−τ)=−τ+t+2. Thus,
Alternatively, this can be evaluated by the triangle area:
t = np.arange(-4.0, 4.0, 0.01)
h_half = (-t + 3.5)*(step(t,2.5) - step(t,3.5))
fig = plt.figure(figsize=(12,2.5))
ax1 = fig.add_axes([0, 0, 1, 1]) # [left, bottom, width, height]
plt.plot(t,h_half,'r-',linewidth=3, label="$h$ at $t=0.5$");
plt.title('Impulse response, $h(-(\u03c4 - t))$ at t = -0.5, with the input signal, $x(t)$')
plt.plot(t,x,'g-',linewidth=5, label="$x(t)$");
plt.xlabel('T');
ax1.fill_between(t,0,h_half,where=x>=h_half,color='black')
legend = plt.legend(loc='center')
ax1.annotate('$t + 1$', xy=(2.5, 0), xytext=(2.2, 0.1),
arrowprops=dict(facecolor='yellow', shrink=0.05),
);
The overlap starts at τ=t+1 and ends at τ=3.
In the above interval, x(τ)=1 and h(t−τ)=−τ+t+2. Thus,
y(t)=∫3t+1(1)(−τ+t+2)dτor
y(t)=t(1−t2)Alternatively, this can be evaluated by subtracting the smaller triangle area, At, from the bigger triangle, AT:
t = np.arange(-4.0, 4.0, 0.01)
h_half = (-t + 4)*(step(t,3) - step(t,4))
fig = plt.figure(figsize=(12,2.5))
ax1 = fig.add_axes([0, 0, 1, 1]) # [left, bottom, width, height]
plt.plot(t,h_half,'r-',linewidth=3, label="$h$ at $t=2$");
plt.title('Impulse response, $h(-(\u03c4 - t))$ at t = -0.5, with the input signal, $x(t)$')
plt.plot(t,x,'g-',linewidth=5, label="$x(t)$");
plt.xlabel('T');
ax1.fill_between(t,0,h_half,where=x>=h_half,color='black')
legend = plt.legend(loc='center')
ax1.annotate('No Overlap', xy=(3, 0.4), xytext=(2.2, 0.4),
arrowprops=dict(facecolor='yellow', shrink=0.05),
);
Therefore, the convolution result is:
y(t)={0if −∞<t<−112(t+1)2if −1<t<012if 0<t<1t−t22if 1<t<20if 2<t<∞t = np.arange(-4.0, 4.0, 0.01)
# input
x = step(t,1) - step(t,3)
# impulse response
h = (t + 2)*(step(t,-2) - step(t,-1))
# result
result = np.zeros(len(t))
result = 0.5*(t+1)**2 * (step(t,-1)-step(t,0)) + 0.5* (step(t,0)-step(t,1)) + t * (1 - 0.5*t) * (step(t,1)-step(t,2))
fig = plt.figure(figsize=(14,4))
plt.plot(t,x,'g-',linewidth=5, label='Input signal, $x(t)$');
plt.plot(t,h,'r-',linewidth=3, label='Impulse response, $h(t)$');
plt.plot(t,result,'b-',linewidth=3, label='Output signal, $y(t)$');
plt.xlabel('t')
plt.grid()
legend = plt.legend(loc='upper left');
t = np.arange(-2.0, 2.0, 0.01)
x = step(t,0) - step(t,1)
h = (-t + 1)*(step(t,0) - step(t,1))
fig = plt.figure(figsize=(15,3))
plt.subplot(1, 2, 1)
plt.plot(t,x,'g-',linewidth=5);
plt.title('Input signal, $x(t)$')
plt.xlabel('t')
plt.subplot(1, 2, 2)
plt.plot(t,h,'r-',linewidth=3);
plt.title('Impulse response, $h(t)$')
plt.xlabel('t');
Note: In this exercise, the signal is time-reversed.
t = np.arange(-2.0, 2.0, 0.01)
x = step(t,-1) - step(t,0)
fig = plt.figure(figsize=(12,3))
ax1 = fig.add_axes([0, 0, 1, 1]) # [left, bottom, width, height]
plt.plot(t,x,'g-',linewidth=5);
plt.title('Time-reversed input signal, $x(t-\u03c4)$')
plt.xlabel('T');
ax1.annotate('$t$', xy=(0, 0), xytext=(0.1, 0.1),
arrowprops=dict(facecolor='yellow', shrink=0.05),
);
ax1.annotate('$t-1$', xy=(-1, 0), xytext=(-1.2, 0.1),
arrowprops=dict(facecolor='yellow', shrink=0.05),
);
Note: This rectangular pulse begins at τ=t−1 and ends at τ=t.
t = np.arange(-2.0, 2.0, 0.01)
x_0 = step(t,-1) - step(t,0)
x__5 = step(t,-1.5) - step(t,-0.5)
x_1 = step(t,-2) - step(t,-1)
h = (-t + 1)*(step(t,0) - step(t,1))
fig = plt.figure(figsize=(12,3))
ax1 = fig.add_axes([1, 0, 1, 1]) # [left, bottom, width, height]
plt.plot(t,x_1,'cd-.',linewidth=5, label="x at $t=-1$");
plt.plot(t,x__5,'m--',linewidth=5, label="x at $t=-0.5$");
plt.plot(t,x_0,'g-',linewidth=3, label="x at $t=0$");
plt.title('Time-reversed input signal, $x(t-\tau)$ with the Impulse response, $h(t)$')
plt.plot(t,h,'r-',linewidth=3, label="h(t)");
plt.xlabel('T');
legend = plt.legend(loc='upper right');
t = np.arange(-2.0, 2.0, 0.01)
x = step(t,-0.5) - step(t,0.5)
h = (-t + 1)*(step(t,0) - step(t,1))
fig = plt.figure(figsize=(12,3))
ax1 = fig.add_axes([1, 0, 1, 1]) # [left, bottom, width, height]
plt.plot(t,x,'g-',linewidth=5, label="x at $t=0.5$");
plt.title('Time-reversed input signal, $x(t-T)$ with the Impulse response, $h(t)$')
plt.plot(t,h,'r-',linewidth=3, label="h");
plt.xlabel('T');
ax1.annotate('$t$', xy=(0.5, 0), xytext=(0.6, 0.15),
arrowprops=dict(facecolor='yellow', shrink=0.05),
);
ax1.fill_between(t,0,h,where=x>=h,color='black')
legend = plt.legend(loc='upper right');
The overlap starts at τ=0 and ends at τ=t. Thus,
In the above interval, x(t−τ)=1 and h(τ)=−τ+1.
or y(t)=t(1−t2)
t = np.arange(-2.0, 2.0, 0.01)
x = step(t,0) - step(t,1)
h = (-t + 1)*(step(t,0) - step(t,1))
fig = plt.figure(figsize=(12,3))
ax1 = fig.add_axes([1, 0, 1, 1]) # [left, bottom, width, height]
plt.plot(t,x,'g-',linewidth=5, label="x at $t=0.5$");
plt.title('Time-reversed input signal, $x(t-T)$ with the Impulse response, $h(t)$')
plt.plot(t,h,'r-',linewidth=3, label="h");
plt.xlabel('T');
ax1.annotate('$t$', xy=(1, 0), xytext=(1.1, 0.15),
arrowprops=dict(facecolor='yellow', shrink=0.05),
);
ax1.annotate('$t-1$', xy=(0, 0), xytext=(-0.2, 0.15),
arrowprops=dict(facecolor='yellow', shrink=0.05),
);
ax1.fill_between(t,0,h,where=x>=h,color='black')
legend = plt.legend(loc='upper right');
at t=1, y(t)=(h∗x)(t)=∫10h(τ)x(t−τ)dτ=32−1=12
t = np.arange(-2.0, 2.0, 0.01)
x = step(t,0.5) - step(t,1.5)
h = (-t + 1)*(step(t,0) - step(t,1))
fig = plt.figure(figsize=(12,3))
ax1 = fig.add_axes([1, 0, 1, 1]) # [left, bottom, width, height]
plt.plot(t,x,'g-',linewidth=5, label="x at $t=1.5$");
plt.title('Time-reversed input signal, $x(t-T)$ with the Impulse response, $h(t)$')
plt.plot(t,h,'r-',linewidth=3, label="h");
plt.xlabel('T');
ax1.annotate('$t-1$', xy=(0.5, 0), xytext=(0.3, 0.15),
arrowprops=dict(facecolor='yellow', shrink=0.05),
);
ax1.fill_between(t,0,h,where=x>=h,color='black')
legend = plt.legend(loc='upper right');
t = np.arange(-2.0, 2.0, 0.01)
x = step(t,1) - step(t,2)
h = (-t + 1)*(step(t,0) - step(t,1))
fig = plt.figure(figsize=(12,3))
ax1 = fig.add_axes([1, 0, 1, 1]) # [left, bottom, width, height]
plt.plot(t,x,'g-',linewidth=3, label="x at $t=2$");
plt.title('Time-reversed input signal, $x(t-T)$ with the Impulse response, $h(t)$')
plt.plot(t,h,'r-',linewidth=3, label="h");
plt.xlabel('T');
legend = plt.legend(loc='upper right');
Therefore, the convolution result is:
y(t)={0if −∞<t<0t(1−t2)if 0<t<112if t=1t22−2t+2if 1<t<20if 2<t<∞t = np.arange(-4.0, 4.0, 0.01)
# input
x = step(t,0) - step(t,1)
# impulse response
h = (-t + 1)*(step(t,0) - step(t,1))
# result
result = np.zeros(len(t))
result = t * (1 - 0.5*t) * (step(t,0) - step(t,1)) + (0.5*t*t - 2*t + 2)*(step(t,1) - step(t,2))
fig = plt.figure(figsize=(16,4))
plt.plot(t,x,'g-',linewidth=5, label='Input signal, $x(t)$');
plt.plot(t,h,'r-',linewidth=3, label='Impulse response, $h(t)$');
plt.plot(t,result,'b-',linewidth=3, label='Output signal, $y(t)$');
plt.xlabel('t')
plt.grid()
legend = plt.legend(loc='upper left');
By: Melvin Cabatuan melvincabatuan@gmail.com
This ipython notebook is licensed under the CC-BY-NC-SA license: http://creativecommons.org/licenses/by-nc-sa/4.0/
References:
[1] Weisstein, Eric W. "Convolution." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/Convolution.html
[2] Notes from Prof. Alan Oppenheim. http://ocw.mit.edu/resources/res-6-007-signals-and-systems-spring-2011/