%pylab inline
Welcome to pylab, a matplotlib-based Python environment [backend: module://IPython.kernel.zmq.pylab.backend_inline]. For more information, type 'help(pylab)'.
from matplotlib import pyplot as plt
import numpy as np
from scipy.integrate import odeint
from colorline import colorline
# Display the help for the odeint function:
# The output can be shortened or suppressed by clicking or double clicking on the region to the left of the output
help(odeint)
Help on function odeint in module scipy.integrate.odepack: odeint(func, y0, t, args=(), Dfun=None, col_deriv=0, full_output=0, ml=None, mu=None, rtol=None, atol=None, tcrit=None, h0=0.0, hmax=0.0, hmin=0.0, ixpr=0, mxstep=0, mxhnil=0, mxordn=12, mxords=5, printmessg=0) Integrate a system of ordinary differential equations. Solve a system of ordinary differential equations using lsoda from the FORTRAN library odepack. Solves the initial value problem for stiff or non-stiff systems of first order ode-s:: dy/dt = func(y,t0,...) where y can be a vector. Parameters ---------- func : callable(y, t0, ...) Computes the derivative of y at t0. y0 : array Initial condition on y (can be a vector). t : array A sequence of time points for which to solve for y. The initial value point should be the first element of this sequence. args : tuple, optional Extra arguments to pass to function. Dfun : callable(y, t0, ...) Gradient (Jacobian) of `func`. col_deriv : bool, optional True if `Dfun` defines derivatives down columns (faster), otherwise `Dfun` should define derivatives across rows. full_output : bool, optional True if to return a dictionary of optional outputs as the second output printmessg : bool, optional Whether to print the convergence message Returns ------- y : array, shape (len(t), len(y0)) Array containing the value of y for each desired time in t, with the initial value `y0` in the first row. infodict : dict, only returned if full_output == True Dictionary containing additional output information ======= ============================================================ key meaning ======= ============================================================ 'hu' vector of step sizes successfully used for each time step. 'tcur' vector with the value of t reached for each time step. (will always be at least as large as the input times). 'tolsf' vector of tolerance scale factors, greater than 1.0, computed when a request for too much accuracy was detected. 'tsw' value of t at the time of the last method switch (given for each time step) 'nst' cumulative number of time steps 'nfe' cumulative number of function evaluations for each time step 'nje' cumulative number of jacobian evaluations for each time step 'nqu' a vector of method orders for each successful step. 'imxer' index of the component of largest magnitude in the weighted local error vector (e / ewt) on an error return, -1 otherwise. 'lenrw' the length of the double work array required. 'leniw' the length of integer work array required. 'mused' a vector of method indicators for each successful time step: 1: adams (nonstiff), 2: bdf (stiff) ======= ============================================================ Other Parameters ---------------- ml, mu : int, optional If either of these are not None or non-negative, then the Jacobian is assumed to be banded. These give the number of lower and upper non-zero diagonals in this banded matrix. For the banded case, `Dfun` should return a matrix whose columns contain the non-zero bands (starting with the lowest diagonal). Thus, the return matrix from `Dfun` should have shape ``len(y0) * (ml + mu + 1)`` when ``ml >=0`` or ``mu >=0``. rtol, atol : float, optional The input parameters `rtol` and `atol` determine the error control performed by the solver. The solver will control the vector, e, of estimated local errors in y, according to an inequality of the form ``max-norm of (e / ewt) <= 1``, where ewt is a vector of positive error weights computed as ``ewt = rtol * abs(y) + atol``. rtol and atol can be either vectors the same length as y or scalars. Defaults to 1.49012e-8. tcrit : ndarray, optional Vector of critical points (e.g. singularities) where integration care should be taken. h0 : float, (0: solver-determined), optional The step size to be attempted on the first step. hmax : float, (0: solver-determined), optional The maximum absolute step size allowed. hmin : float, (0: solver-determined), optional The minimum absolute step size allowed. ixpr : bool, optional Whether to generate extra printing at method switches. mxstep : int, (0: solver-determined), optional Maximum number of (internally defined) steps allowed for each integration point in t. mxhnil : int, (0: solver-determined), optional Maximum number of messages printed. mxordn : int, (0: solver-determined), optional Maximum order to be allowed for the non-stiff (Adams) method. mxords : int, (0: solver-determined), optional Maximum order to be allowed for the stiff (BDF) method. See Also -------- ode : a more object-oriented integrator based on VODE. quad : for finding the area under a curve.
odeint
¶The function odeint
, which is found in the integrate
submodule of the scipy
package, integrates ordinary differential equations of the form
dydt=f(y,t),
Writing y=(y1,…,yn), we have a system of the form ˙y1=f1(y1,…,yn,t)˙y2=f2(y1,…,yn,t)…˙yn=fn(y1,…,yn,t)
Note that in fact, any ordinary (system of) ordinary differential equation(s) can be written in this form by defining new variables to represent higher-order derivatives,
and incorporating them into the vector y of variables.
To use odeint
, we must define at least the Python function f
which implements the mathematical function f. It must take a vector y
and a time t
,
and return the new vector f(y,t)
.
The simplest case is when the spatial dimension is n=1. For example, we could wish to solve the ODE ˙y=ay, whose exact solution is, of course, y(t)=y0exp(at).
a = 2
def f(y, t):
return a*y
We must provide an initial condition for y, for example at t=0:
y0 = 1.0
and an array of values of t where we wish to have output:
t_output = np.arange(0, 6, 0.1)
print t_output
[ 0. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1. 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2. 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3. 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4. 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5. 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9]
We pass the information to the odeint
function to perform the integration:
y_result = odeint(f, y0, t_output)
y_result = y_result[:, 0] # convert the returned 2D array to a 1D array
Now we can plot the results, together with the exact solution:
#plt.plot(t_output, y_result)
colorline(t_output, y_result)
plt.plot(t_output, y0 * np.exp(a * t_output))
[<matplotlib.lines.Line2D at 0x114547310>]
We can calculate the absolute error between the numerically-calculated result and the exact solution:
plt.plot(t_output, np.abs(y_result - y0 * np.exp(a * t_output)))
[<matplotlib.lines.Line2D at 0x1144ef410>]
Now let's consider a simple 2nd-order ODE, that of the harmonic oscillator: ¨x+ω2x=0.
Writing the vector y=(x,y), we obtain the standard form ˙y=f(y), where f is given by f[(xy)]=(f1[(xy)]f2[(xy)])=(y−ω2x)
f
in Python. Remember that it must also take t
as a second variable, even if f is not explicitly a function of t:
omega_squared = 4
def harmonic(x_vec, t):
x, y = x_vec # tuple unpacking
return [y, -omega_squared*x]
y0 = [0.7, 0.5]
t_output = np.arange(0, 5, 0.1)
y_result = odeint(harmonic, y0, t_output)
#plt.figure(figsize = (5,5))
fig, (ax1, ax2, ax3) = plt.subplots(ncols = 3, figsize=(10,10))
xx, yy = y_result.T # extract x and y cols
#ax1.plot(xx, yy)
plt.sca(ax1)
colorline(xx, yy, cmap='jet')
ax1.axis('scaled')
#ax2.plot(t_output, xx)
plt.sca(ax2)
colorline(t_output, xx, cmap='cool')
ax2.axis('scaled')
ax3.plot(t_output, yy)
ax3.axis('scaled')
plt.tight_layout()
plt.show()
x = np.linspace(-1.0, 1.0, 10)
XX, YY = np.meshgrid(x, x)
k = omega_squared
plt.quiver(XX, YY, YY, -k*XX, pivot='middle')
plt.axis('equal')
(-1.0, 1.0, -1.0, 1.0)
plt.streamplot(XX, YY, YY, -k*XX)
plt.quiver(XX, YY, YY, -k*XX, pivot = 'middle')
plt.axis('equal')
(-1.5, 1.0, -1.0, 1.0)
Now let's try with a matrix:
MM = np.array([[-1.5, 1.], [-1., -1.0]])
def matrix(x_vec, t):
return np.dot(MM, x_vec)
y0 = [1, 1]
t_output = np.arange(0, 10, 0.1)
y_result = odeint(matrix, y0, t_output)
fig, (ax1, ax2, ax3) = plt.subplots(ncols = 3)
xx, yy = y_result.T # extract x and y cols
ax1.plot(xx, yy)
ax1.axis('scaled')
ax2.plot(t_output, xx)
ax2.axis('scaled')
ax3.plot(t_output, yy)
ax3.axis('scaled')
plt.tight_layout()
plt.show()
ode
interface¶An alternative interface is ode
.
from scipy.integrate import ode
help(ode)
Help on class ode in module scipy.integrate._ode: class ode(__builtin__.object) | A generic interface class to numeric integrators. | | Solve an equation system :math:`y'(t) = f(t,y)` with (optional) ``jac = df/dy``. | | Parameters | ---------- | f : callable ``f(t, y, *f_args)`` | Rhs of the equation. t is a scalar, ``y.shape == (n,)``. | ``f_args`` is set by calling ``set_f_params(*args)``. | `f` should return a scalar, array or list (not a tuple). | jac : callable ``jac(t, y, *jac_args)`` | Jacobian of the rhs, ``jac[i,j] = d f[i] / d y[j]``. | ``jac_args`` is set by calling ``set_f_params(*args)``. | | Attributes | ---------- | t : float | Current time. | y : ndarray | Current variable values. | | See also | -------- | odeint : an integrator with a simpler interface based on lsoda from ODEPACK | quad : for finding the area under a curve | | Notes | ----- | Available integrators are listed below. They can be selected using | the `set_integrator` method. | | "vode" | | Real-valued Variable-coefficient Ordinary Differential Equation | solver, with fixed-leading-coefficient implementation. It provides | implicit Adams method (for non-stiff problems) and a method based on | backward differentiation formulas (BDF) (for stiff problems). | | Source: http://www.netlib.org/ode/vode.f | | .. warning:: | | This integrator is not re-entrant. You cannot have two `ode` | instances using the "vode" integrator at the same time. | | This integrator accepts the following parameters in `set_integrator` | method of the `ode` class: | | - atol : float or sequence | absolute tolerance for solution | - rtol : float or sequence | relative tolerance for solution | - lband : None or int | - rband : None or int | Jacobian band width, jac[i,j] != 0 for i-lband <= j <= i+rband. | Setting these requires your jac routine to return the jacobian | in packed format, jac_packed[i-j+lband, j] = jac[i,j]. | - method: 'adams' or 'bdf' | Which solver to use, Adams (non-stiff) or BDF (stiff) | - with_jacobian : bool | Whether to use the jacobian | - nsteps : int | Maximum number of (internally defined) steps allowed during one | call to the solver. | - first_step : float | - min_step : float | - max_step : float | Limits for the step sizes used by the integrator. | - order : int | Maximum order used by the integrator, | order <= 12 for Adams, <= 5 for BDF. | | "zvode" | | Complex-valued Variable-coefficient Ordinary Differential Equation | solver, with fixed-leading-coefficient implementation. It provides | implicit Adams method (for non-stiff problems) and a method based on | backward differentiation formulas (BDF) (for stiff problems). | | Source: http://www.netlib.org/ode/zvode.f | | .. warning:: | | This integrator is not re-entrant. You cannot have two `ode` | instances using the "zvode" integrator at the same time. | | This integrator accepts the same parameters in `set_integrator` | as the "vode" solver. | | .. note:: | | When using ZVODE for a stiff system, it should only be used for | the case in which the function f is analytic, that is, when each f(i) | is an analytic function of each y(j). Analyticity means that the | partial derivative df(i)/dy(j) is a unique complex number, and this | fact is critical in the way ZVODE solves the dense or banded linear | systems that arise in the stiff case. For a complex stiff ODE system | in which f is not analytic, ZVODE is likely to have convergence | failures, and for this problem one should instead use DVODE on the | equivalent real system (in the real and imaginary parts of y). | | "lsoda" | | Real-valued Variable-coefficient Ordinary Differential Equation | solver, with fixed-leading-coefficient implementation. It provides | automatic method switching between implicit Adams method (for non-stiff | problems) and a method based on backward differentiation formulas (BDF) | (for stiff problems). | | Source: http://www.netlib.org/odepack | | .. warning:: | | This integrator is not re-entrant. You cannot have two `ode` | instances using the "lsoda" integrator at the same time. | | This integrator accepts the following parameters in `set_integrator` | method of the `ode` class: | | - atol : float or sequence | absolute tolerance for solution | - rtol : float or sequence | relative tolerance for solution | - lband : None or int | - rband : None or int | Jacobian band width, jac[i,j] != 0 for i-lband <= j <= i+rband. | Setting these requires your jac routine to return the jacobian | in packed format, jac_packed[i-j+lband, j] = jac[i,j]. | - with_jacobian : bool | Whether to use the jacobian | - nsteps : int | Maximum number of (internally defined) steps allowed during one | call to the solver. | - first_step : float | - min_step : float | - max_step : float | Limits for the step sizes used by the integrator. | - max_order_ns : int | Maximum order used in the nonstiff case (default 12). | - max_order_s : int | Maximum order used in the stiff case (default 5). | - max_hnil : int | Maximum number of messages reporting too small step size (t + h = t) | (default 0) | - ixpr : int | Whether to generate extra printing at method switches (default False). | | "dopri5" | | This is an explicit runge-kutta method of order (4)5 due to Dormand & | Prince (with stepsize control and dense output). | | Authors: | | E. Hairer and G. Wanner | Universite de Geneve, Dept. de Mathematiques | CH-1211 Geneve 24, Switzerland | e-mail: ernst.hairer@math.unige.ch, gerhard.wanner@math.unige.ch | | This code is described in [HNW93]_. | | This integrator accepts the following parameters in set_integrator() | method of the ode class: | | - atol : float or sequence | absolute tolerance for solution | - rtol : float or sequence | relative tolerance for solution | - nsteps : int | Maximum number of (internally defined) steps allowed during one | call to the solver. | - first_step : float | - max_step : float | - safety : float | Safety factor on new step selection (default 0.9) | - ifactor : float | - dfactor : float | Maximum factor to increase/decrease step size by in one step | - beta : float | Beta parameter for stabilised step size control. | | "dop853" | | This is an explicit runge-kutta method of order 8(5,3) due to Dormand | & Prince (with stepsize control and dense output). | | Options and references the same as "dopri5". | | Examples | -------- | | A problem to integrate and the corresponding jacobian: | | >>> from scipy.integrate import ode | >>> | >>> y0, t0 = [1.0j, 2.0], 0 | >>> | >>> def f(t, y, arg1): | >>> return [1j*arg1*y[0] + y[1], -arg1*y[1]**2] | >>> def jac(t, y, arg1): | >>> return [[1j*arg1, 1], [0, -arg1*2*y[1]]] | | The integration: | | >>> r = ode(f, jac).set_integrator('zvode', method='bdf', with_jacobian=True) | >>> r.set_initial_value(y0, t0).set_f_params(2.0).set_jac_params(2.0) | >>> t1 = 10 | >>> dt = 1 | >>> while r.successful() and r.t < t1: | >>> r.integrate(r.t+dt) | >>> print r.t, r.y | | References | ---------- | .. [HNW93] E. Hairer, S.P. Norsett and G. Wanner, Solving Ordinary | Differential Equations i. Nonstiff Problems. 2nd edition. | Springer Series in Computational Mathematics, | Springer-Verlag (1993) | | Methods defined here: | | __init__(self, f, jac=None) | | integrate(self, t, step=0, relax=0) | Find y=y(t), set y as an initial condition, and return y. | | set_f_params(self, *args) | Set extra parameters for user-supplied function f. | | set_initial_value(self, y, t=0.0) | Set initial conditions y(t) = y. | | set_integrator(self, name, **integrator_params) | Set integrator by name. | | Parameters | ---------- | name : str | Name of the integrator. | integrator_params : | Additional parameters for the integrator. | | set_jac_params(self, *args) | Set extra parameters for user-supplied function jac. | | successful(self) | Check if integration was successful. | | ---------------------------------------------------------------------- | Data descriptors defined here: | | __dict__ | dictionary for instance variables (if defined) | | __weakref__ | list of weak references to the object (if defined) | | y
An annoying 'feature' is that the function must now be written as f(t, y)
rather than f(y, t)
as before!
This interface includes two Runge-Kutta methods, dopri5
and dop853
.
Let's use the harmonic
function, suitably modified to invert its arguments, to investigate ode
:
omega_squared = 4
def harmonic_new(t, x_vec):
x, y = x_vec # tuple unpacking
return [y, -omega_squared*x]
We first create an object of type ode
and set various parameters to indicate the type of method to use:
t_final = 10.0
dt = 0.1
y0 = [0.7, 0.5]
t0 = 0.0
y_result = []
t_output = []
# Initialisation:
backend = "dopri5"
solver = ode(harmonic_new)
solver.set_integrator(backend) # nsteps=1
solver.set_initial_value(y0, t0)
y_result.append(y0)
t_output.append(t0)
while solver.successful() and solver.t < t_final:
solver.integrate(solver.t + dt, step=1)
y_result.append(solver.y)
t_output.append(solver.t)
y_result = array(y_result)
t_output = array(t_output)
#print y_result
from scipy.integrate import ode
def my_odeint(f, y0, t):
'''
ODE integrator compatible with odeint, that uses ode underneath
'''
y0 = np.asarray(y0)
backend = "dopri5"
solver = ode(f)
solver.set_integrator(backend) # nsteps=1
t0 = t[0]
t_final = t[-1]
solver.set_initial_value(y0, t0)
y_result = [y0]
i = 1
current_t = t[i]
while solver.successful() and solver.t < t_final:
solver.integrate(current_t, step=1)
i += 1
if i < len(t):
current_t = t[i]
y_result.append(solver.y)
return np.array(y_result)
t_output = np.arange(0, 10, 0.01)
y0 = [1, 1]
y_result = my_odeint(harmonic_new, y0, t_output)
fig, (ax1, ax2, ax3) = plt.subplots(ncols = 3, figsize=(10,10))
xx, yy = y_result.T # extract x and y cols
#ax1.plot(xx, yy)
plt.sca(ax1)
colorline(xx, yy, cmap='jet')
ax1.axis('scaled')
#ax2.plot(t_output, xx)
plt.sca(ax2)
colorline(t_output, xx, cmap='cool')
ax2.axis('scaled')
plt.sca(ax3)
colorline(t_output, yy)
ax3.axis('scaled')
plt.tight_layout()
plt.show()
from numpy import zeros, linspace, array
from scipy.integrate import ode
from pylab import figure, show, xlabel, ylabel
from mpl_toolkits.mplot3d import Axes3D
def lorenz_sys(t, q):
x = q[0]
y = q[1]
z = q[2]
# sigma, rho and beta are global.
f = [sigma * (y - x),
rho*x - y - x*z,
x*y - beta*z]
return f
ic = [1.0, 2.0, 1.0]
t0 = 0.0
t1 = 100.0
dt = 0.01
sigma = 10.0
rho = 28.0
beta = 10.0/3
solver = ode(lorenz_sys)
t = []
sol = []
solver.set_initial_value(ic, t0)
#solver.set_integrator('dop853')
solver.set_integrator('dopri5')
while solver.successful() and solver.t < t1:
solver.integrate(solver.t + dt)
t.append(solver.t)
sol.append(solver.y)
t = array(t)
sol = array(sol)
fig = figure()
ax = Axes3D(fig)
ax.plot(sol[:,0], sol[:,1], sol[:,2])
xlabel('x')
ylabel('y')
show()