#!/usr/bin/env python # coding: utf-8 # # Matplotlib # Matplotlib is a python 2D plotting library which produces publication quality figures in a variety of hardcopy formats and interactive environments across platforms. matplotlib can be used in python scripts, the python and ipython shell, web application servers, and six graphical user interface toolkits. # # Matplotlib tries to make easy things easy and hard things possible. You can generate plots, histograms, power spectra, bar charts, errorcharts, scatterplots, etc, with just a few lines of code. # # Library documentation: http://matplotlib.org/ # In[1]: # needed to display the graphs get_ipython().run_line_magic('matplotlib', 'inline') from pylab import * # In[2]: x = linspace(0, 5, 10) y = x ** 2 fig = plt.figure() # left, bottom, width, height (range 0 to 1) axes = fig.add_axes([0.1, 0.1, 0.8, 0.8]) axes.plot(x, y, 'r') axes.set_xlabel('x') axes.set_ylabel('y') axes.set_title('title'); # In[3]: fig = plt.figure() axes1 = fig.add_axes([0.1, 0.1, 0.8, 0.8]) # main axes axes2 = fig.add_axes([0.2, 0.5, 0.4, 0.3]) # inset axes # main figure axes1.plot(x, y, 'r') axes1.set_xlabel('x') axes1.set_ylabel('y') axes1.set_title('title') # insert axes2.plot(y, x, 'g') axes2.set_xlabel('y') axes2.set_ylabel('x') axes2.set_title('insert title'); # In[4]: fig, axes = plt.subplots(nrows=1, ncols=2) for ax in axes: ax.plot(x, y, 'r') ax.set_xlabel('x') ax.set_ylabel('y') ax.set_title('title') fig.tight_layout() # In[5]: # example with a legend and latex symbols fig, ax = plt.subplots() ax.plot(x, x**2, label=r"$y = \alpha^2$") ax.plot(x, x**3, label=r"$y = \alpha^3$") ax.legend(loc=2) # upper left corner ax.set_xlabel(r'$\alpha$', fontsize=18) ax.set_ylabel(r'$y$', fontsize=18) ax.set_title('title'); # In[6]: # line customization fig, ax = plt.subplots(figsize=(12,6)) ax.plot(x, x+1, color="blue", linewidth=0.25) ax.plot(x, x+2, color="blue", linewidth=0.50) ax.plot(x, x+3, color="blue", linewidth=1.00) ax.plot(x, x+4, color="blue", linewidth=2.00) # possible linestype options ‘-‘, ‘–’, ‘-.’, ‘:’, ‘steps’ ax.plot(x, x+5, color="red", lw=2, linestyle='-') ax.plot(x, x+6, color="red", lw=2, ls='-.') ax.plot(x, x+7, color="red", lw=2, ls=':') # custom dash line, = ax.plot(x, x+8, color="black", lw=1.50) line.set_dashes([5, 10, 15, 10]) # format: line length, space length, ... # possible marker symbols: marker = '+', 'o', '*', 's', ',', '.', # '1', '2', '3', '4', ... ax.plot(x, x+ 9, color="green", lw=2, ls='*', marker='+') ax.plot(x, x+10, color="green", lw=2, ls='*', marker='o') ax.plot(x, x+11, color="green", lw=2, ls='*', marker='s') ax.plot(x, x+12, color="green", lw=2, ls='*', marker='1') # marker size and color ax.plot(x, x+13, color="purple", lw=1, ls='-', marker='o', markersize=2) ax.plot(x, x+14, color="purple", lw=1, ls='-', marker='o', markersize=4) ax.plot(x, x+15, color="purple", lw=1, ls='-', marker='o', markersize=8, markerfacecolor="red") ax.plot(x, x+16, color="purple", lw=1, ls='-', marker='s', markersize=8, markerfacecolor="yellow", markeredgewidth=2, markeredgecolor="blue"); # In[7]: # axis controls fig, axes = plt.subplots(1, 3, figsize=(12, 4)) axes[0].plot(x, x**2, x, x**3) axes[0].set_title("default axes ranges") axes[1].plot(x, x**2, x, x**3) axes[1].axis('tight') axes[1].set_title("tight axes") axes[2].plot(x, x**2, x, x**3) axes[2].set_ylim([0, 60]) axes[2].set_xlim([2, 5]) axes[2].set_title("custom axes range"); # In[8]: # scaling fig, axes = plt.subplots(1, 2, figsize=(10,4)) axes[0].plot(x, x**2, x, exp(x)) axes[0].set_title("Normal scale") axes[1].plot(x, x**2, x, exp(x)) axes[1].set_yscale("log") axes[1].set_title("Logarithmic scale (y)"); # In[9]: # axis grid fig, axes = plt.subplots(1, 2, figsize=(10,3)) # default grid appearance axes[0].plot(x, x**2, x, x**3, lw=2) axes[0].grid(True) # custom grid appearance axes[1].plot(x, x**2, x, x**3, lw=2) axes[1].grid(color='b', alpha=0.5, linestyle='dashed', linewidth=0.5) # In[10]: # twin axes example fig, ax1 = plt.subplots() ax1.plot(x, x**2, lw=2, color="blue") ax1.set_ylabel(r"area $(m^2)$", fontsize=18, color="blue") for label in ax1.get_yticklabels(): label.set_color("blue") ax2 = ax1.twinx() ax2.plot(x, x**3, lw=2, color="red") ax2.set_ylabel(r"volume $(m^3)$", fontsize=18, color="red") for label in ax2.get_yticklabels(): label.set_color("red") # In[11]: # other plot styles xx = np.linspace(-0.75, 1., 100) n = array([0,1,2,3,4,5]) fig, axes = plt.subplots(1, 4, figsize=(12,3)) axes[0].scatter(xx, xx + 0.25*randn(len(xx))) axes[0].set_title("scatter") axes[1].step(n, n**2, lw=2) axes[1].set_title("step") axes[2].bar(n, n**2, align="center", width=0.5, alpha=0.5) axes[2].set_title("bar") axes[3].fill_between(x, x**2, x**3, color="green", alpha=0.5); axes[3].set_title("fill_between"); # In[12]: # histograms n = np.random.randn(100000) fig, axes = plt.subplots(1, 2, figsize=(12,4)) axes[0].hist(n) axes[0].set_title("Default histogram") axes[0].set_xlim((min(n), max(n))) axes[1].hist(n, cumulative=True, bins=50) axes[1].set_title("Cumulative detailed histogram") axes[1].set_xlim((min(n), max(n))); # In[13]: # annotations fig, ax = plt.subplots() ax.plot(xx, xx**2, xx, xx**3) ax.text(0.15, 0.2, r"$y=x^2$", fontsize=20, color="blue") ax.text(0.65, 0.1, r"$y=x^3$", fontsize=20, color="green"); # In[14]: # color map alpha = 0.7 phi_ext = 2 * pi * 0.5 def flux_qubit_potential(phi_m, phi_p): return ( + alpha - 2 * cos(phi_p)*cos(phi_m) - alpha * cos(phi_ext - 2*phi_p)) phi_m = linspace(0, 2*pi, 100) phi_p = linspace(0, 2*pi, 100) X,Y = meshgrid(phi_p, phi_m) Z = flux_qubit_potential(X, Y).T fig, ax = plt.subplots() p = ax.pcolor(X/(2*pi), Y/(2*pi), Z, cmap=cm.RdBu, vmin=abs(Z).min(), vmax=abs(Z).max()) cb = fig.colorbar(p, ax=ax) # In[15]: from mpl_toolkits.mplot3d.axes3d import Axes3D # In[16]: # surface plots fig = plt.figure(figsize=(14,6)) # `ax` is a 3D-aware axis instance because of the projection='3d' # keyword argument to add_subplot ax = fig.add_subplot(1, 2, 1, projection='3d') p = ax.plot_surface(X, Y, Z, rstride=4, cstride=4, linewidth=0) # surface_plot with color grading and color bar ax = fig.add_subplot(1, 2, 2, projection='3d') p = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.coolwarm, linewidth=0, antialiased=False) cb = fig.colorbar(p, shrink=0.5) # In[17]: # wire frame fig = plt.figure(figsize=(8,6)) ax = fig.add_subplot(1, 1, 1, projection='3d') p = ax.plot_wireframe(X, Y, Z, rstride=4, cstride=4) # In[18]: # contour plot with projections fig = plt.figure(figsize=(8,6)) ax = fig.add_subplot(1,1,1, projection='3d') ax.plot_surface(X, Y, Z, rstride=4, cstride=4, alpha=0.25) cset = ax.contour(X, Y, Z, zdir='z', offset=-pi, cmap=cm.coolwarm) cset = ax.contour(X, Y, Z, zdir='x', offset=-pi, cmap=cm.coolwarm) cset = ax.contour(X, Y, Z, zdir='y', offset=3*pi, cmap=cm.coolwarm) ax.set_xlim3d(-pi, 2*pi); ax.set_ylim3d(0, 3*pi); ax.set_zlim3d(-pi, 2*pi);