#!/usr/bin/env python # coding: utf-8 # # Learning Scikit-learn: Machine Learning in Python # ## IPython Notebook for Chapter 2: Supervised Learning - Estimating Boston house pricing using Linear Regression # _In every example we have seen so far, we have faced what in Chapter 1, Machine Learning – A Gentle Introduction, we called classification problems: the output we aimed at predicting belonged to a discrete set. But often, we would want to predict # a value extracted from the real line. In this notebook, we want to approximate a real function (i.e. solve a _regression problem_), using Linear Regression, a very simple regression model, from Scikit-learn._ # Start by importing numpy, scikit-learn, and pyplot, the Python libraries we will be using in this chapter. Show the versions we will be using (in case you have problems running the notebooks). # In[42]: get_ipython().run_line_magic('pylab', 'inline') import IPython import sklearn as sk import numpy as np import matplotlib import matplotlib.pyplot as plt print ('IPython version:', IPython.__version__) print ('numpy version:', np.__version__) print ('scikit-learn version:', sk.__version__) print ('matplotlib version:', matplotlib.__version__) # Import the Boston House Pricing Dataset (http://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html), and show their features. # In[43]: from sklearn.datasets import load_boston boston = load_boston() print (boston.data.shape) print (boston.feature_names) print (np.max(boston.target), np.min(boston.target), np.mean(boston.target)) print (boston.DESCR) # Show an example instance, and some common statistics: # In[44]: print (boston.data[0]) print (np.max(boston.data), np.min(boston.data), np.mean(boston.data)) # Build, as usual, training and testing sets: # In[45]: from sklearn.cross_validation import train_test_split X_train, X_test, y_train, y_test = train_test_split(boston.data, boston.target, test_size=0.25, random_state=33) # Before learning, let's try to see which features are more relevant for our learning task, i.e. which of them are better prize predictors. We will use the SelectKBest method from the feature_selection package, and plot the results. # In[46]: from sklearn.feature_selection import * fs=SelectKBest(score_func=f_regression,k=5) X_new=fs.fit_transform(X_train,y_train) print (zip(fs.get_support(),boston.feature_names)) x_min, x_max = X_new[:,0].min() - .5, X_new[:, 0].max() + .5 y_min, y_max = y_train.min() - .5, y_train.max() + .5 #fig=plt.figure() #fig.subplots_adjust(left=0, right=1, bottom=0, top=1, hspace=0.05, wspace=0.05) # Two subplots, unpack the axes array immediately fig, axes = plt.subplots(1,5) fig.set_size_inches(12,12) for i in range(5): axes[i].set_aspect('equal') axes[i].set_title('Feature ' + str(i)) axes[i].set_xlabel('Feature') axes[i].set_ylabel('Median house value') axes[i].set_xlim(x_min, x_max) axes[i].set_ylim(y_min, y_max) sca(axes[i]) plt.scatter(X_new[:,i],y_train) # In regression tasks, is very important to normalize data (to avoid that large-valued features weight too much in the final result) # In[47]: from sklearn.preprocessing import StandardScaler scalerX = StandardScaler().fit(X_train) scalery = StandardScaler().fit(y_train) X_train = scalerX.transform(X_train) y_train = scalery.transform(y_train) X_test = scalerX.transform(X_test) y_test = scalery.transform(y_test) print (np.max(X_train), np.min(X_train), np.mean(X_train), np.max(y_train), np.min(y_train), np.mean(y_train)) # ### A Linear Model # Let's start with a lineal model, SGDRegressor, that tries to find the hyperplane that minimizes a certain loss function (typically, the sum of squared distances from each instance to the hyperplane). It uses Stochastic Gradient Descent to find the minimum. # Regression poses an additional problem: how should we evaluate our results? Accuracy is not a good idea, since # we are predicting real values, it is almost impossible for us to predict exactly the final value. There are several measures that can be used (you can look at the list of functions under sklearn.metrics module). The most common is the R2 score, or coefficient of determination that measures the proportion of the outcomes variation explained by the model, and is the default score function for regression methods in scikit-learn. This score reaches its maximum value of 1 when the model perfectly predicts all the test target values. # In[48]: from sklearn.cross_validation import * def train_and_evaluate(clf, X_train, y_train): clf.fit(X_train, y_train) print ("Coefficient of determination on training set:",clf.score(X_train, y_train)) # create a k-fold croos validation iterator of k=5 folds cv = KFold(X_train.shape[0], 5, shuffle=True, random_state=33) scores = cross_val_score(clf, X_train, y_train, cv=cv) print ("Average coefficient of determination using 5-fold crossvalidation:",np.mean(scores)) # In[49]: from sklearn import linear_model clf_sgd = linear_model.SGDRegressor(loss='squared_loss', penalty=None, random_state=42) train_and_evaluate(clf_sgd,X_train,y_train) print (clf_sgd.coef_) # You probably noted the $penalty=None$ parameter when we called the method. The penalization parameter for linear regression methods is introduced to avoid overfitting. It does this by penalizing those hyperplanes having some of their coefficients too large, seeking hyperplanes where each feature contributes more or less the same to the predicted value. This parameter is generally the L2 norm (the squared sums of the coefficients) or the L1 norm (that is the sum of the absolute value of the coefficients). Let's see how our model works if we introduce an L2 or L1 penalty. # In[50]: clf_sgd1 = linear_model.SGDRegressor(loss='squared_loss', penalty='l2', random_state=42) train_and_evaluate(clf_sgd1,X_train,y_train) # In[51]: clf_sgd2 = linear_model.SGDRegressor(loss='squared_loss', penalty='l1', random_state=42) train_and_evaluate(clf_sgd2,X_train,y_train) # ### Support Vector Machines for regression # The regression version of SVM can be used instead to find the hyperplane (note how easy is to change the classification method in scikit-learn!). We will try a linear kernel, a polynomial kernel, and finally, a rbf kernel. For more information on kernels, see http://scikit-learn.org/stable/modules/svm.html#svm-kernels # In[52]: from sklearn import svm clf_svr= svm.SVR(kernel='linear') train_and_evaluate(clf_svr,X_train,y_train) # In[53]: clf_svr_poly= svm.SVR(kernel='poly') train_and_evaluate(clf_svr_poly,X_train,y_train) # In[54]: clf_svr_rbf= svm.SVR(kernel='rbf') train_and_evaluate(clf_svr_rbf,X_train,y_train) # In[55]: clf_svr_poly2= svm.SVR(kernel='poly',degree=2) train_and_evaluate(clf_svr_poly2,X_train,y_train) # ### Random Forests for Regression # Finally, let's try again Random Forests, in their Extra Trees, and Regression version # In[56]: from sklearn import ensemble clf_et=ensemble.ExtraTreesRegressor(n_estimators=10,random_state=42) train_and_evaluate(clf_et,X_train,y_train) # An interesting side effect of random forest classification, is that you can measure how 'important' each feature is when predicting the final result (note the number of rooms is the most important). (Thanks to Gareth Williams) # In[57]: important=zip(clf_et.feature_importances_,boston.feature_names) print (sorted(important, key=lambda x: x[0], reverse=True)) # Finally, evaluate our classifiers on the testing set # In[58]: from sklearn import metrics def measure_performance(X,y,clf, show_accuracy=True, show_classification_report=True, show_confusion_matrix=True, show_r2_score=False): y_pred=clf.predict(X) if show_accuracy: print ("Accuracy:{0:.3f}".format(metrics.accuracy_score(y,y_pred)),"\n") if show_classification_report: print ("Classification report") print (metrics.classification_report(y,y_pred),"\n") if show_confusion_matrix: print ("Confusion matrix") print (metrics.confusion_matrix(y,y_pred),"\n") if show_r2_score: print ("Coefficient of determination:{0:.3f}".format(metrics.r2_score(y,y_pred)),"\n") measure_performance(X_test,y_test,clf_et, show_accuracy=False, show_classification_report=False,show_confusion_matrix=False, show_r2_score=True)