#!/usr/bin/env python # coding: utf-8 # ## Analytic lanscape of a complex function # The colored analytic landscape of a complex function, f, is the graph of the function modulus or log-modulus, colored according to the argument of $f(z)$ at any z in the function domain. # # Here we illustrate how defining this surface as an instance of the Plotly class `plotly.graph_objects.Surface`, we can plot the contour lines as well as the surface projection onto a z-plane, that amounts to plotting the domain coloring of the function f. # We are using the cyclic HSV colorscale to color-encode the argument value. For details on HSV and domain coloring see this Jupyter notebook [https://nbviewer.jupyter.org/github/empet/Math/blob/master/DomainColoring.ipynb](https://nbviewer.jupyter.org/github/empet/Math/blob/master/DomainColoring.ipynb). # In[1]: import numpy as np from numpy import pi import plotly.graph_objs as go import plotly.io as pio pio.renderers.default ="notebook_connected" # In[2]: def eval_modulus(f, re=(-2.5, 2.5), im=(-2.5, 2.5), N=50, log = False): nrx = int(N * (re[1]-re[0])) nry = int(N * (im[1]-im[0])) x = np.linspace(re[0], re[1], nrx) y = np.linspace(im[0], im[1], nry) x, y = np.meshgrid(x, y) z = x + 1j*y w = f(z) w[np.isinf(w)] = np.nan if log: modf = np.log(np.absolute(w)) else: modf = np.absolute(w) # |f| return x, y, np.angle(w), modf #np.angle(w) is the argument of f # HSV colorscale: # In[3]: pl_hsv = [[0.0, 'rgb(0, 242, 242)'], [0.083, 'rgb(0, 121, 242)'], [0.167, 'rgb(0, 0, 242)'], [0.25, 'rgb(121, 0, 242)'], [0.333, 'rgb(242, 0, 242)'], [0.417, 'rgb(242, 0, 121)'], [0.5, 'rgb(242, 0, 0)'], [0.583, 'rgb(242, 121, 0)'], [0.667, 'rgb(242, 242, 0)'], [0.75, 'rgb(121, 242, 0)'], [0.833, 'rgb(0, 242, 0)'], [0.917, 'rgb(0, 242, 121)'], [1.0, 'rgb(0, 242, 242)']] # Define `tickvals` and `ticktext` for colorbar: # In[4]: tickvals=[-np.pi, -2*np.pi/3, -np.pi/3, 0, np.pi/3, 2*np.pi/3, np.pi] #define the above values as strings with pi-unicode ticktext=['-\u03c0', '-2\u03c0/3', '-\u03c0/3', '0', '\u03c0/3', '2\u03c0/3', '\u03c0'] coloraxis_settings = dict(colorscale= pl_hsv, colorbar_thickness=25, colorbar_len=0.7, colorbar_tickvals=tickvals, colorbar_ticktext=ticktext, colorbar_title='arg(f)') def set_contours(min_mod, zrange_max, n=20, color = 'rgb(250, 250, 250)'): return dict(start=min_mod, end=zrange_max, highlight=True, size=(zrange_max-min_mod)/n, width=1.5, #contour line width color= color, project_z=True) # Let us plot the analytic landscape of the function f, defined below. # f has a zero multiple of order 3, and three simple poles. # In[5]: f = lambda z: z**3 / (z**3-1) x, y, argf, modf = eval_modulus(f) fig1 = go.Figure(go.Surface(x=x[0, :], y=y[:, 0], z=modf, surfacecolor=argf, coloraxis='coloraxis')) z_range = (-4, 6) fig1.update_layout(title_text = '$\\text{Analytic landscape of the function}\: f(z)= \\displaystyle\\frac{z^3}{z^3-1}$', title_x=0.5, font_family="Balto", width=700, height=700, coloraxis = coloraxis_settings, scene_zaxis_range=z_range); # Add the surface projection onto the z-plane of equation `z=z_range[0]`, and the contour lines of the plotted surface, and their projection, to illustrate the domain coloring plot of the function f(z) onto this z-plane: # In[6]: min_mod = np.min(modf) fig1.add_surface(x=x[0, :], y=y[:, 0], z= z_range[0]*np.ones(modf.shape), surfacecolor=argf, colorscale= pl_hsv, showscale=False) fig1.data[0].update(contours_z=dict(show=True, **set_contours(min_mod, z_range[1], n=28, color = 'rgb(250, 250, 250)'))); fig1.update_scenes(camera_eye_z=0.75); # In[7]: fig1.show() # Finally let us plot the log modulus of $h(z)= e^{1/z}$: # In[8]: h = lambda z: np.exp(1/z) x, y, argh, modh = eval_modulus(h, log=True) fig2 = go.Figure(go.Surface(x=x[0, :], y=y[:, 0], z=modh, surfacecolor=argh, coloraxis='coloraxis')) z_range= (-6, 6) fig2.update_layout(title_text = '$\\text{Analytic landscape of the function}\: f(z)= e^{1/z}$', title_x=0.5, font_family="Balto", width=700, height=700, coloraxis = coloraxis_settings, scene_zaxis_range=z_range); # In[9]: min_mod = np.min(modh) fig2.add_surface(x=x[0, :], y=y[:, 0], z= z_range[0]*np.ones(modh.shape), surfacecolor=argh, colorscale= pl_hsv, showscale=False) fig2.data[0].update(contours_z=dict(show=True, start=z_range[0], end=z_range[1], highlight=True, size=(z_range[1]-z_range[0])/26, width=1.5, #contour line width color= 'rgb(250,250,250)', project_z=True)) fig2.update_scenes(camera_eye_x=-1.55, camera_eye_y=1.55, camera_eye_z=0.6); # In[10]: fig2.show() # Unlike the representation of modulus, $|f}$, the log-modulus, $log(|f|$, has negative values where $0<|f|<1$ # In[ ]: