#!/usr/bin/env python # coding: utf-8 # This notebook was prepared by [Donne Martin](https://github.com/donnemartin). Source and license info is on [GitHub](https://github.com/donnemartin/interactive-coding-challenges). # # Challenge Notebook # ## Problem: Find the shortest path between two nodes in a graph. # # * [Constraints](#Constraints) # * [Test Cases](#Test-Cases) # * [Algorithm](#Algorithm) # * [Code](#Code) # * [Unit Test](#Unit-Test) # * [Solution Notebook](#Solution-Notebook) # ## Constraints # # * Is the graph directed? # * Yes # * Is the graph weighted? # * No # * Can we assume we already have Graph and Node classes? # * Yes # * Are the inputs two Nodes? # * Yes # * Is the output a list of Node keys that make up the shortest path? # * Yes # * If there is no path, should we return None? # * Yes # * Can we assume this is a connected graph? # * Yes # * Can we assume the inputs are valid? # * Yes # * Can we assume this fits memory? # * Yes # ## Test Cases # # Input: # * `add_edge(source, destination, weight)` # # ``` # graph.add_edge(0, 1) # graph.add_edge(0, 4) # graph.add_edge(0, 5) # graph.add_edge(1, 3) # graph.add_edge(1, 4) # graph.add_edge(2, 1) # graph.add_edge(3, 2) # graph.add_edge(3, 4) # ``` # # Result: # * search_path(start=0, end=2) -> [0, 1, 3, 2] # * search_path(start=0, end=0) -> [0] # * search_path(start=4, end=5) -> None # ## Algorithm # # Refer to the [Solution Notebook](http://nbviewer.ipython.org/github/donnemartin/interactive-coding-challenges/blob/master/graphs_trees/graph_path_exists/path_exists_solution.ipynb). If you are stuck and need a hint, the solution notebook's algorithm discussion might be a good place to start. # ## Code # In[ ]: get_ipython().run_line_magic('run', '../graph/graph.py') get_ipython().run_line_magic('load', '../graph/graph.py') # In[ ]: class GraphShortestPath(Graph): def shortest_path(self, source_key, dest_key): # TODO: Implement me pass # ## Unit Test # **The following unit test is expected to fail until you solve the challenge.** # In[ ]: # %load test_shortest_path.py import unittest class TestShortestPath(unittest.TestCase): def test_shortest_path(self): nodes = [] graph = GraphShortestPath() for id in range(0, 6): nodes.append(graph.add_node(id)) graph.add_edge(0, 1) graph.add_edge(0, 4) graph.add_edge(0, 5) graph.add_edge(1, 3) graph.add_edge(1, 4) graph.add_edge(2, 1) graph.add_edge(3, 2) graph.add_edge(3, 4) self.assertEqual(graph.shortest_path(nodes[0].key, nodes[2].key), [0, 1, 3, 2]) self.assertEqual(graph.shortest_path(nodes[0].key, nodes[0].key), [0]) self.assertEqual(graph.shortest_path(nodes[4].key, nodes[5].key), None) print('Success: test_shortest_path') def main(): test = TestShortestPath() test.test_shortest_path() if __name__ == '__main__': main() # ## Solution Notebook # # Review the [Solution Notebook](http://nbviewer.ipython.org/github/donnemartin/interactive-coding-challenges/blob/master/graphs_trees/graph_path_exists/path_exists_solution.ipynb) for a discussion on algorithms and code solutions.