#!/usr/bin/env python # coding: utf-8 # # Computing a sparse solution of a set of linear inequalities # # A derivative work by Judson Wilson, 5/11/2014.
# Adapted from the CVX example of the same name, by Almir Mutapcic, 2/28/2006. # # Topic References: # # * Section 6.2, Boyd & Vandenberghe "Convex Optimization"
# * "Just relax: Convex programming methods for subset selection and sparse approximation" by J. A. Tropp # # # ## Introduction # # # We consider a set of linear inequalities # $Ax \preceq b$ # which are feasible. We apply two heuristics to find a sparse point $x$ that satisfies these inequalities. # # The (standard) $\ell_1$-norm heuristic for finding a sparse solution is: # \begin{array}{ll} # \mbox{minimize} & \|x\|_1 \\ # \mbox{subject to} & Ax \preceq b. # \end{array} # # The log-based heuristic is an iterative method for finding # a sparse solution, by finding a local optimal point for the problem: # \begin{array}{ll} # \mbox{minimize} & \sum_i \log \left( \delta + \left|x_i\right| \right) \\ # \mbox{subject to} & Ax \preceq b, # \end{array} # where $\delta$ is a small threshold value (which determines if a value is close to zero). # We cannot solve this problem since it is a minimization of a concave # function and thus it is not a convex problem. However, we can apply # a heuristic in which we linearize the objective, solve, and re-iterate. # This becomes a weighted $\ell_1$-norm heuristic: # \begin{array}{ll} # \mbox{minimize} & \sum_i W_i \left|x_i\right| \\ # \mbox{subject to} & Ax \preceq b, # \end{array} # which in each iteration re-adjusts the weights $W_i$ based on the rule: # $$W_i = 1/(\delta + \left|x_i\right|),$$ # where $\delta$ is a small threshold value. # # This algorithm is described in papers: # # * "An affine scaling methodology for best basis selection"
# by B. D. Rao and K. Kreutz-Delgado # * "Portfolio optimization with linear and fixed transaction costs"
# by M. S. Lobo, M. Fazel, and S. Boyd # # ## Generate problem data # In[1]: import cvxpy as cp import numpy as np # Fix random number generator so we can repeat the experiment. np.random.seed(1) # The threshold value below which we consider an element to be zero. delta = 1e-8 # Problem dimensions (m inequalities in n-dimensional space). m = 100 n = 50 # Construct a feasible set of inequalities. # (This system is feasible for the x0 point.) A = np.random.randn(m, n) x0 = np.random.randn(n) b = A.dot(x0) + np.random.random(m) # ## $\ell_1$-norm heuristic # In[2]: # Create variable. x_l1 = cp.Variable(shape=n) # Create constraint. constraints = [A*x_l1 <= b] # Form objective. obj = cp.Minimize(cp.norm(x_l1, 1)) # Form and solve problem. prob = cp.Problem(obj, constraints) prob.solve() print("status: {}".format(prob.status)) # Number of nonzero elements in the solution (its cardinality or diversity). nnz_l1 = (np.absolute(x_l1.value) > delta).sum() print('Found a feasible x in R^{} that has {} nonzeros.'.format(n, nnz_l1)) print("optimal objective value: {}".format(obj.value)) # ## Iterative log heuristic # In[3]: # Do 15 iterations, allocate variable to hold number of non-zeros # (cardinality of x) for each run. NUM_RUNS = 15 nnzs_log = np.array(()) # Store W as a positive parameter for simple modification of the problem. W = cp.Parameter(shape=n, nonneg=True); x_log = cp.Variable(shape=n) # Initial weights. W.value = np.ones(n); # Setup the problem. obj = cp.Minimize( W.T*cp.abs(x_log) ) # sum of elementwise product constraints = [A*x_log <= b] prob = cp.Problem(obj, constraints) # Do the iterations of the problem, solving and updating W. for k in range(1, NUM_RUNS+1): # Solve problem. # The ECOS solver has known numerical issues with this problem # so force a different solver. prob.solve(solver=cp.CVXOPT) # Check for error. if prob.status != cp.OPTIMAL: raise Exception("Solver did not converge!") # Display new number of nonzeros in the solution vector. nnz = (np.absolute(x_log.value) > delta).sum() nnzs_log = np.append(nnzs_log, nnz); print('Iteration {}: Found a feasible x in R^{}' ' with {} nonzeros...'.format(k, n, nnz)) # Adjust the weights elementwise and re-iterate W.value = np.ones(n)/(delta*np.ones(n) + np.absolute(x_log.value)) # ## Result plots # # The following code plots the result of the $\ell_1$-norm heuristic, as well as the result for each iteration of the log heuristic. # In[4]: import matplotlib.pyplot as plt # Show plot inline in ipython. get_ipython().run_line_magic('matplotlib', 'inline') # Plot properties. plt.rc('text', usetex=True) plt.rc('font', family='serif') plt.figure(figsize=(6,6)) # Plot the two data series. plt.plot(range(1,1+NUM_RUNS), nnzs_log, label='log heuristic') plt.plot((1, NUM_RUNS), (nnz_l1, nnz_l1), linestyle='--', label='l1-norm heuristic') # Format and show plot. plt.xlabel('iteration', fontsize=16) plt.ylabel('number of non-zeros (cardinality)', fontsize=16) plt.ylim(0,n) plt.xlim(1,NUM_RUNS) plt.legend(loc='lower right') plt.tight_layout() plt.show()