#!/usr/bin/env python # coding: utf-8 # # p16: Poisson equation on [-1,1]x[-1,1] with u=0 on boundary # We solve the following Poisson problem # $$ # u_{xx} + u_{yy} = 10\sin(8x(y-1)), \qquad -1 < x,y < 1, \qquad u=0 \quad \mbox{on boundary} # $$ # In[1]: get_ipython().run_line_magic('matplotlib', 'inline') get_ipython().run_line_magic('config', "InlineBackend.figure_format='svg'") from chebPy import cheb from numpy import meshgrid,sin,dot,eye,kron,zeros,reshape,linspace from mpl_toolkits.mplot3d import Axes3D from matplotlib.pyplot import figure,subplot,plot,title,axis,xlabel,ylabel,spy from matplotlib import cm from scipy.linalg import solve from scipy.interpolate import interp2d # In[4]: N = 24; D,x = cheb(N); y = x; xx,yy = meshgrid(x[1:N],y[1:N]) xx = reshape(xx,(N-1)**2) yy = reshape(yy,(N-1)**2) f = 10*sin(8*xx*(yy-1)) D2 = dot(D,D); D2 = D2[1:N,1:N]; I = eye(N-1) L = kron(I,D2) + kron(D2,I) # Plot sparsity pattern figure(figsize=(8,8)), spy(L) # Solve Lu=f u = solve(L,f) # Convert 1-d vectors to 2-d uu = zeros((N+1,N+1)); uu[1:N,1:N] = reshape(u,(N-1,N-1)) [xx,yy] = meshgrid(x,y) value = uu[N//4,N//4] # Interpolate to finer mesh just for visualization f = interp2d(x,y,uu,kind='cubic') xxx = linspace(-1.0,1.0,50) uuu = f(xxx,xxx) fig = figure(figsize=(8,8)) ax = fig.add_subplot(111, projection='3d') X,Y = meshgrid(xxx,xxx) ax.plot_surface(X,Y,uuu,rstride=1,cstride=1,cmap=cm.jet,edgecolor='black') title("$u(2^{-1/2},2^{-1/2})$="+str(value)) xlabel("x"); ylabel("y");